GABA receptor

Last updated
Gamma-aminobutyric acid GABA.png
Gamma-aminobutyric acid

The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABAA and GABAB. GABAA receptors are ligand-gated ion channels (also known as ionotropic receptors); whereas GABAB receptors are G protein-coupled receptors, also called metabotropic receptors.

Contents

Ligand-gated ion channels

Cell GABAA receptor. Cell GABA Receptor.png
Cell GABAA receptor.

GABAA receptor

It has long been recognized that, for neurons that are stimulated by bicuculline and picrotoxin, the fast inhibitory response to GABA is due to direct activation of an anion channel. [1] [2] [3] [4] [5] This channel was subsequently termed the GABAA receptor. [6] Fast-responding GABA receptors are members of a family of Cys-loop ligand-gated ion channels. [7] [8] [9] Members of this superfamily, which includes nicotinic acetylcholine receptors, GABAA receptors, glycine and 5-HT3 receptors, possess a characteristic loop formed by a disulfide bond between two cysteine residues. [10]

In ionotropic GABAA receptors, binding of GABA molecules to their binding sites in the extracellular part of the receptor triggers opening of a chloride ion-selective pore. [11] The increased chloride conductance drives the membrane potential towards the reversal potential of the Cl¯ ion which is about –75 mV in neurons, inhibiting the firing of new action potentials. This mechanism is responsible for the sedative effects of GABAA allosteric agonists. In addition, activation of GABA receptors lead to the so-called shunting inhibition, which reduces the excitability of the cell independent of the changes in membrane potential.

There have been numerous reports of excitatory GABAA receptors. According to the excitatory GABA theory, this phenomenon is due to increased intracellular concentration of Cl¯ ions either during development of the nervous system [12] [13] or in certain cell populations. [14] [15] [16] After this period of development, a chloride pump is upregulated and inserted into the cell membrane, pumping Cl ions into the extracellular space of the tissue. Further openings via GABA binding to the receptor then produce inhibitory responses. Over-excitation of this receptor induces receptor remodeling and the eventual invagination of the GABA receptor. As a result, further GABA binding becomes inhibited and inhibitory postsynaptic potentials are no longer relevant.

However, the excitatory GABA theory has been questioned as potentially being an artefact of experimental conditions, with most data acquired in in-vitro brain slice experiments susceptible to un-physiological milieu such as deficient energy metabolism and neuronal damage. The controversy arose when a number of studies have shown that GABA in neonatal brain slices becomes inhibitory if glucose in perfusate is supplemented with ketone bodies, pyruvate, or lactate, [17] [18] or that the excitatory GABA was an artefact of neuronal damage. [19] Subsequent studies from originators and proponents of the excitatory GABA theory have questioned these results, [20] [21] [22] but the truth remained elusive until the real effects of GABA could be reliably elucidated in intact living brain. Since then, using technology such as in-vivo electrophysiology/imaging and optogenetics, two in-vivo studies have reported the effect of GABA on neonatal brain, and both have shown that GABA is indeed overall inhibitory, with its activation in the developing rodent brain not resulting in network activation, [23] and instead leading to a decrease of activity. [24] [25]

GABA receptors influence neural function by coordinating with glutamatergic processes. [26]

GABAA-ρ receptor

A subclass of ionotropic GABA receptors, insensitive to typical allosteric modulators of GABAA receptor channels such as benzodiazepines and barbiturates, [27] [28] [29] was designated GABAС receptor. [30] [31] Native responses of the GABAC receptor type occur in retinal bipolar or horizontal cells across vertebrate species. [32] [33] [34] [35]

GABAС receptors are exclusively composed of ρ (rho) subunits that are related to GABAA receptor subunits. [36] [37] [38] Although the term "GABAС receptor" is frequently used, GABAС may be viewed as a variant within the GABAA receptor family. [7] Others have argued that the differences between GABAС and GABAA receptors are large enough to justify maintaining the distinction between these two subclasses of GABA receptors. [39] [40] However, since GABAС receptors are closely related in sequence, structure, and function to GABAA receptors and since other GABAA receptors besides those containing ρ subunits appear to exhibit GABAС pharmacology, the Nomenclature Committee of the IUPHAR has recommended that the GABAС term no longer be used and these ρ receptors should be designated as the ρ subfamily of the GABAA receptors (GABAA-ρ). [41]

G protein-coupled receptors

GABAB receptor

A slow response to GABA is mediated by GABAB receptors, [42] originally defined on the basis of pharmacological properties. [43]

In studies focused on the control of neurotransmitter release, it was noted that a GABA receptor was responsible for modulating evoked release in a variety of isolated tissue preparations. This ability of GABA to inhibit neurotransmitter release from these preparations was not blocked by bicuculline, was not mimicked by isoguvacine, and was not dependent on Cl¯, all of which are characteristic of the GABAA receptor. The most striking discovery was the finding that baclofen (β-parachlorophenyl GABA), a clinically employed muscle relaxant [44] [45] mimicked, in a stereoselective manner, the effect of GABA.

Later ligand-binding studies provided direct evidence of binding sites for baclofen on central neuronal membranes. [46] cDNA cloning confirmed that the GABAB receptor belongs to the family of G-protein coupled receptors. [47] Additional information on GABAB receptors has been reviewed elsewhere. [48] [49] [50] [51] [52] [53] [54] [55]

GABA receptor gene polymorphisms

Two separate genes on two chromosomes control GABA synthesis - glutamate decarboxylase and alpha-ketoglutarate decarboxylase genes - though not much research has been done to explain this polygenic phenomenon. [56] GABA receptor genes have been studied more in depth, and many have hypothesized about the deleterious effects of polymorphisms in these receptor genes. The most common single nucleotide polymorphisms (SNPs) occurring in GABA receptor genes rho 1, 2, and 3 (GABBR1, GABBR2, and GABBR3) have been more recently explored in literature, in addition to the potential effects of these polymorphisms. However, some research has demonstrated that there is evidence that these polymorphisms caused by single base pair variations may be harmful.

It was discovered that the minor allele of a single nucleotide polymorphism at GABBR1 known as rs1186902 is significantly associated with a later age of onset for migraines, [57] but for the other SNPs, no differences were discovered between genetic and allelic variations in the control vs. migraine participants. Similarly, in a study examining SNPs in rho 1, 2, and 3, and their implication in essential tremor, a nervous system disorder, it was discovered that there were no differences in the frequencies of the allelic variants of polymorphisms for control vs. essential tremor participants. [58] On the other hand, research examining the effect of SNPs in participants with restless leg syndrome found an "association between GABRR3rs832032 polymorphism and the risk for RLS, and a modifier effect of GABRA4 rs2229940 on the age of onset of RLS" - the latter of which is a modifier gene polymorphism. [59] The most common GABA receptor SNPs do not correlate with deleterious health effects in many cases, but do in a few.

One significant example of a deleterious mutation is the major association between several GABA receptor gene polymorphisms and schizophrenia. Because GABA is integral to the release of inhibitory neurotransmitters which produce a calming effect and play a role in reducing anxiety, stress, and fear, it is not surprising that polymorphisms in these genes result in more consequences relating to mental health than to physical health. Of an analysis on 19 SNPs on various GABA receptor genes, five SNPs in the GABBR2 group were found to be significantly associated with schizophrenia, [60] which produce the unexpected haplotype frequencies not found in the studies mentioned previously.

Several studies have verified association between alcohol use disorder and the rs279858 polymorphism on the GABRA2 gene e, and higher negative alcohol effects scores for individuals who were homozygous at six SNPs. [61] Furthermore, a study examining polymorphisms in the GABA receptor beta 2 subunit gene found an association with schizophrenia and bipolar disorder, and examined three SNPs and their effects on disease frequency and treatment dosage. [62] A major finding of this study was that functional psychosis should be conceptualized as a scale of phenotypes rather than distinct categories.

See also

Related Research Articles

γ-Aminobutyric acid Main inhibitory neurotransmitter in the mammalian brain

γ-Aminobutyric acid, or GABA, is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system.

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Accurate regulation of GABAergic transmission through appropriate developmental processes, specificity to neural cell types, and responsiveness to activity is crucial for the proper functioning of nearly all aspects of the central nervous system (CNS). Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions (Cl) and, to a lesser extent, bicarbonate ions (HCO3).

GABAB receptors (GABABR) are G-protein coupled receptors for gamma-aminobutyric acid (GABA), therefore making them metabotropic receptors, that are linked via G-proteins to potassium channels. The changing potassium concentrations hyperpolarize the cell at the end of an action potential. The reversal potential of the GABAB-mediated IPSP is –100 mV, which is much more hyperpolarized than the GABAA IPSP. GABAB receptors are found in the central nervous system and the autonomic division of the peripheral nervous system.

The GABAA-rho receptor is a subclass of GABAA receptors composed entirely of rho (ρ) subunits. GABAA receptors including those of the ρ-subclass are ligand-gated ion channels responsible for mediating the effects of gamma-amino butyric acid (GABA), the major inhibitory neurotransmitter in the brain. The GABAA-ρ receptor, like other GABAA receptors, is expressed in many areas of the brain, but in contrast to other GABAA receptors, the GABAA-ρ receptor has especially high expression in the retina.

GABA gamma-aminobutyric acid (GABA) is a key chemical messenger or a neurotransmitter in the central nervous system, that significantly inhibits neuronal transmission. GABA calms the brain and controls several physiological processes, such as stress, anxiety, and sleep. GABAA receptors are a class of ionotropic receptors that are triggered by GABA. They are made up of five subunits that are assembled in various configurations to create distinct receptor subtypes. The direct influx of chloride ions causes rapid inhibitory responses. GABAB receptors are another type of metabotropic receptor that modifies intracellular signaling pathways to provide slower, sustained inhibitory responses. At synapses, GABAA receptors facilitate rapid inhibitory neurotransmission, whereas GABAB receptor which comprise GABA B1 and GABA B2 subunits—control neurotransmitter release and cellular excitability over a longer period of time. As these. These unique qualities help explain the various ways that GABAergic neurotransmission controls brain communication and neuronal function.

<span class="mw-page-title-main">GABBR1</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid B receptor, 1 (GABAB1), is a G-protein coupled receptor subunit encoded by the GABBR1 gene.

<span class="mw-page-title-main">Gamma-aminobutyric acid receptor subunit alpha-1</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit alpha-1 is a protein that in humans is encoded by the GABRA1 gene.

<span class="mw-page-title-main">GABBR2</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid (GABA) B receptor, 2 (GABAB2) is a G-protein coupled receptor subunit encoded by the GABBR2 gene in humans.

<span class="mw-page-title-main">GABRB2</span> Protein-coding gene in the species Homo sapiens

The GABAA beta-2 subunit is a protein that in humans is encoded by the GABRB2 gene. It combines with other subunits to form the ionotropic GABAA receptors. GABA system is the major inhibitory system in the brain, and its dominant GABAA receptor subtype is composed of α1, β2, and γ2 subunits with the stoichiometry of 2:2:1, which accounts for 43% of all GABAA receptors. Alternative splicing of the GABRB2 gene leads at least to four isoforms, viz. β2-long (β2L) and β2-short. Alternatively spliced variants displayed similar but non-identical electrophysiological properties. GABRB2 is subjected to positive selection and known to be both an alternative splicing and a recombination hotspot; it is regulated via epigenetic regulation including imprinting and gene and promoter methylation GABRB2 has been associated with a number of neuropsychiatric disorders, and found to display altered expression in cancer.

<span class="mw-page-title-main">GABRB1</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit beta-1 is a protein that in humans is encoded by the GABRB1 gene.

<span class="mw-page-title-main">GABA transporter type 1</span> Protein-coding gene in the species Homo sapiens

GABA transporter 1 (GAT1) also known as sodium- and chloride-dependent GABA transporter 1 is a protein that in humans is encoded by the SLC6A1 gene and belongs to the solute carrier 6 (SLC6) family of transporters. It mediates gamma-aminobutyric acid's translocation from the extracellular to intracellular spaces within brain tissue and the central nervous system as a whole.

<span class="mw-page-title-main">GABRR1</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit rho-1 is a protein that in humans is encoded by the GABRR1 gene.

<span class="mw-page-title-main">GABRA6</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit alpha-6 is a protein that in humans is encoded by the GABRA6 gene.

<span class="mw-page-title-main">GABRA3</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit alpha-3 is a protein that in humans is encoded by the GABRA3 gene.

<span class="mw-page-title-main">GABRA2</span> Protein in humans

Gamma-aminobutyric acid receptor subunit alpha-2 is a protein in humans that is encoded by the GABRA2 gene.

<span class="mw-page-title-main">GABRA4</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit alpha-4 is a protein that in humans is encoded by the GABRA4 gene.

<span class="mw-page-title-main">GABRR2</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit rho-2 is a protein that in humans is encoded by the GABRR2 gene.

<span class="mw-page-title-main">GABRD</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit delta is a protein that in humans is encoded by the GABRD gene. In the mammalian brain, the delta (δ) subunit forms specific GABAA receptor subtypes by co-assembly leading to δ subunit containing GABAA receptors.

<span class="mw-page-title-main">Quisqualamine</span> Chemical compound

Quisqualamine is the α-decarboxylated analogue of quisqualic acid, as well as a relative of the neurotransmitters glutamate and γ-aminobutyric acid (GABA). α-Decarboxylation of excitatory amino acids can produce derivatives with inhibitory effects. Indeed, unlike quisqualic acid, quisqualamine has central depressant and neuroprotective properties and appears to act predominantly as an agonist of the GABAA receptor and also to a lesser extent as an agonist of the glycine receptor, due to the facts that its actions are inhibited in vitro by GABAA antagonists like bicuculline and picrotoxin and by the glycine antagonist strychnine, respectively. Mg2+ and DL-AP5, NMDA receptor blockers, CNQX, an antagonist of both the AMPA and kainate receptors, and 2-hydroxysaclofen, a GABAB receptor antagonist, do not affect quisqualamine's actions in vitro, suggesting that it does not directly affect the ionotropic glutamate receptors or the GABAB receptor in any way. Whether it binds to and acts upon any of the metabotropic glutamate receptors like its analogue quisqualic acid however is unclear.

Ionotropic GABA receptors (iGABARs) are ligand-gated ion channel of the GABA receptors class which are activated by gamma-aminobutyric acid (GABA), and include:

References

  1. Kuffler SW, Edwards C (November 1958). "Mechanism of gamma aminobutyric acid (GABA) action and its relation to synaptic inhibition". Journal of Neurophysiology. 21 (6): 589–610. doi:10.1152/jn.1958.21.6.589. PMID   13599049. Archived from the original on 2004-08-03.
  2. Kravitz EA, Kuffler SW, Potter DD (September 1963). "Gamma-Aminobutyric Acid and Other Blocking Compounds in Crustacea: III. Their Relative Concentrations in Separated Motor and Inhibitory Axons". Journal of Neurophysiology. 26 (5): 739–51. doi:10.1152/jn.1963.26.5.739. PMID   14065325.
  3. Krnjević K, Schwartz S (1967). "The action of gamma-aminobutyric acid on cortical neurones". Experimental Brain Research. 3 (4): 320–36. doi:10.1007/BF00237558. PMID   6031164. S2CID   6891616.
  4. Takeuchi A, Takeuchi N (August 1967). "Anion permeability of the inhibitory post-synaptic membrane of the crayfish neuromuscular junction". The Journal of Physiology. 191 (3): 575–90. doi:10.1113/jphysiol.1967.sp008269. PMC   1365493 . PMID   6051794.
  5. Takeuchi A, Takeuchi N (November 1969). "A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish". The Journal of Physiology. 205 (2): 377–91. doi:10.1113/jphysiol.1969.sp008972. PMC   1348609 . PMID   5357245.
  6. Takeuchi A, Onodera K (March 1972). "Effect of bicuculline on the GABA receptor of the crayfish neuromuscular junction". Nature. 236 (63): 55–6. doi: 10.1038/236055a0 . PMID   4502428. S2CID   12978932.
  7. 1 2 Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, et al. (June 1998). "International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function". Pharmacological Reviews. 50 (2): 291–313. PMID   9647870.
  8. Hevers W, Lüddens H (August 1998). "The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes". Molecular Neurobiology. 18 (1): 35–86. doi:10.1007/BF02741459. PMID   9824848. S2CID   32359279.
  9. Sieghart W, Sperk G (August 2002). "Subunit composition, distribution and function of GABA(A) receptor subtypes". Current Topics in Medicinal Chemistry. 2 (8): 795–816. doi:10.2174/1568026023393507. PMID   12171572.
  10. Phulera S, Zhu H, Yu J, Claxton DP, Yoder N, Yoshioka C, Gouaux E (July 2018). "A receptor in complex with GABA". eLife. 7: e39383. doi: 10.7554/eLife.39383 . PMC   6086659 . PMID   30044221.
  11. Phulera S, Zhu H, Yu J, Claxton DP, Yoder N, Yoshioka C, Gouaux E (July 2018). "A receptor in complex with GABA". eLife. 7: e39383. doi: 10.7554/eLife.39383 . PMC   6086659 . PMID   30044221.
  12. Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (November 1997). "GABAA, NMDA and AMPA receptors: a developmentally regulated 'ménage à trois'". Trends Neurosci. 20 (11): 523–9. doi:10.1016/S0166-2236(97)01147-8. PMID   9364667. S2CID   8022055.
  13. Taketo M, Yoshioka T (2000). "Developmental change of GABA(A) receptor-mediated current in rat hippocampus". Neuroscience. 96 (3): 507–14. doi:10.1016/S0306-4522(99)00574-6. PMID   10717431. S2CID   22103661.
  14. Tomiko SA, Taraskevich PS, Douglas WW (February 1983). "GABA acts directly on cells of pituitary pars intermedia to alter hormone output". Nature. 301 (5902): 706–7. Bibcode:1983Natur.301..706T. doi:10.1038/301706a0. PMID   6828152. S2CID   4326183.
  15. Cherubini E, Gaiarsa JL, Ben-Ari Y (December 1991). "GABA: an excitatory transmitter in early postnatal life". Trends Neurosci. 14 (12): 515–9. doi:10.1016/0166-2236(91)90003-D. PMID   1726341. S2CID   3971981.
  16. Lamsa K, Taira T (September 2003). "Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area". J. Neurophysiol. 90 (3): 1983–95. doi:10.1152/jn.00060.2003. PMID   12750426. S2CID   17650510.
  17. Rheims S, Holmgren CD, Chazal G, Mulder J, Harkany T, Zilberter T, Zilberter Y (August 2009). "GABA action in immature neocortical neurons directly depends on the availability of ketone bodies". Journal of Neurochemistry. 110 (4): 1330–8. doi: 10.1111/j.1471-4159.2009.06230.x . PMID   19558450.
  18. Holmgren CD, Mukhtarov M, Malkov AE, Popova IY, Bregestovski P, Zilberter Y (February 2010). "Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro". Journal of Neurochemistry. 112 (4): 900–12. doi: 10.1111/j.1471-4159.2009.06506.x . PMID   19943846.
  19. Dzhala V, Valeeva G, Glykys J, Khazipov R, Staley K (March 2012). "Traumatic alterations in GABA signaling disrupt hippocampal network activity in the developing brain". The Journal of Neuroscience. 32 (12): 4017–31. doi:10.1523/JNEUROSCI.5139-11.2012. PMC   3333790 . PMID   22442068.
  20. Kirmse K, Witte OW, Holthoff K (November 2010). "GABA depolarizes immature neocortical neurons in the presence of the ketone body β-hydroxybutyrate". The Journal of Neuroscience. 30 (47): 16002–7. doi:10.1523/JNEUROSCI.2534-10.2010. PMC   6633760 . PMID   21106838.
  21. Ruusuvuori E, Kirilkin I, Pandya N, Kaila K (November 2010). "Spontaneous network events driven by depolarizing GABA action in neonatal hippocampal slices are not attributable to deficient mitochondrial energy metabolism". The Journal of Neuroscience. 30 (46): 15638–42. doi:10.1523/JNEUROSCI.3355-10.2010. PMC   6633692 . PMID   21084619.
  22. Tyzio R, Allene C, Nardou R, Picardo MA, Yamamoto S, Sivakumaran S, et al. (January 2011). "Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate". The Journal of Neuroscience. 31 (1): 34–45. doi:10.1523/JNEUROSCI.3314-10.2011. PMC   6622726 . PMID   21209187.
  23. Kirmse K, Kummer M, Kovalchuk Y, Witte OW, Garaschuk O, Holthoff K (July 2015). "GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo". Nature Communications. 6: 7750. Bibcode:2015NatCo...6.7750K. doi: 10.1038/ncomms8750 . PMID   26177896.
  24. Valeeva G, Tressard T, Mukhtarov M, Baude A, Khazipov R (June 2016). "An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons". The Journal of Neuroscience. 36 (22): 5961–73. doi:10.1523/JNEUROSCI.3482-15.2016. PMC   6601813 . PMID   27251618.
  25. Zilberter M (October 2016). "Reality of Inhibitory GABA in Neonatal Brain: Time to Rewrite the Textbooks?". The Journal of Neuroscience. 36 (40): 10242–10244. doi:10.1523/JNEUROSCI.2270-16.2016. PMC   6705588 . PMID   27707962.
  26. Farahmandfar M, Akbarabadi A, Bakhtazad A, Zarrindast MR (March 2017). "Recovery from ketamine-induced amnesia by blockade of GABA-A receptor in the medial prefrontal cortex of mice". Neuroscience. 344: 48–55. doi:10.1016/j.neuroscience.2016.02.056. PMID   26944606. S2CID   24077379.
  27. Sivilotti L, Nistri A (1991). "GABA receptor mechanisms in the central nervous system". Prog. Neurobiol. 36 (1): 35–92. doi:10.1016/0301-0082(91)90036-Z. PMID   1847747. S2CID   31732465.
  28. Bormann J, Feigenspan A (December 1995). "GABAC receptors". Trends Neurosci. 18 (12): 515–9. doi:10.1016/0166-2236(95)98370-E. PMID   8638289. S2CID   40853254.
  29. Johnston GA (September 1996). "GABAc receptors: relatively simple transmitter -gated ion channels?". Trends Pharmacol. Sci. 17 (9): 319–23. doi: 10.1016/0165-6147(96)10038-9 . PMID   8885697.
  30. Drew CA, Johnston GA, Weatherby RP (December 1984). "Bicuculline-insensitive GABA receptors: studies on the binding of (-)-baclofen to rat cerebellar membranes". Neurosci. Lett. 52 (3): 317–21. doi:10.1016/0304-3940(84)90181-2. PMID   6097844. S2CID   966075.
  31. Zhang D, Pan ZH, Awobuluyi M, Lipton SA (March 2001). "Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors". Trends Pharmacol. Sci. 22 (3): 121–32. doi:10.1016/S0165-6147(00)01625-4. PMID   11239575.
  32. Feigenspan A, Wässle H, Bormann J (January 1993). "Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells". Nature. 361 (6408): 159–62. Bibcode:1993Natur.361..159F. doi:10.1038/361159a0. PMID   7678450. S2CID   4347233.
  33. Qian H, Dowling JE (January 1993). "Novel GABA responses from rod-driven retinal horizontal cells". Nature. 361 (6408): 162–4. Bibcode:1993Natur.361..162Q. doi:10.1038/361162a0. PMID   8421521. S2CID   4320616.
  34. Lukasiewicz PD (June 1996). "GABAC receptors in the vertebrate retina". Mol. Neurobiol. 12 (3): 181–94. doi:10.1007/BF02755587. PMID   8884747. S2CID   37167159.
  35. Wegelius K, Pasternack M, Hiltunen JO, Rivera C, Kaila K, Saarma M, Reeben M (January 1998). "Distribution of GABA receptor rho subunit transcripts in the rat brain". Eur. J. Neurosci. 10 (1): 350–7. doi:10.1046/j.1460-9568.1998.00023.x. PMID   9753143. S2CID   25863134.
  36. Shimada S, Cutting G, Uhl GR (April 1992). "gamma-Aminobutyric acid A or C receptor? gamma-Aminobutyric acid rho 1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive gamma-aminobutyric acid responses in Xenopus oocytes". Mol. Pharmacol. 41 (4): 683–7. PMID   1314944.
  37. Kusama T, Spivak CE, Whiting P, Dawson VL, Schaeffer JC, Uhl GR (May 1993). "Pharmacology of GABA rho 1 and GABA alpha/beta receptors expressed in Xenopus oocytes and COS cells". Br. J. Pharmacol. 109 (1): 200–6. doi:10.1111/j.1476-5381.1993.tb13554.x. PMC   2175610 . PMID   8388298.
  38. Kusama T, Wang TL, Guggino WB, Cutting GR, Uhl GR (March 1993). "GABA rho 2 receptor pharmacological profile: GABA recognition site similarities to rho 1". Eur. J. Pharmacol. 245 (1): 83–4. doi:10.1016/0922-4106(93)90174-8. PMID   8386671.
  39. Chebib M, Johnston GA (April 2000). "GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology". J. Med. Chem. 43 (8): 1427–47. doi:10.1021/jm9904349. PMID   10780899.
  40. Bormann J (January 2000). "The 'ABC' of GABA receptors". Trends Pharmacol. Sci. 21 (1): 16–9. doi:10.1016/S0165-6147(99)01413-3. PMID   10637650.
  41. Olsen RW, Sieghart W (September 2008). "International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update". Pharmacological Reviews. 60 (3): 243–60. doi:10.1124/pr.108.00505. PMC   2847512 . PMID   18790874.
  42. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (June 2002). "International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function". Pharmacological Reviews. 54 (2): 247–64. doi:10.1124/pr.54.2.247. PMID   12037141. S2CID   86015084.
  43. Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M (January 1980). "(-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor". Nature. 283 (5742): 92–4. Bibcode:1980Natur.283...92B. doi:10.1038/283092a0. PMID   6243177. S2CID   4238700.
  44. Bein HJ (1972). "Pharmacological differentiations of muscle relaxants". In Birkmayer W (ed.). Spasticity: A Topical Survey. Hans Hubert Bern, Switzerland. pp. 76–89. ISBN   3-456-00390-0.
  45. Keberle H, Faigle JW (1972). "Synthesis and structure-activity relationship of the gamma-aminobutyric acid derivatives". In Birkmayer W (ed.). Spasticity: A Topical Survey. Hans Hubert Bern, Switzerland. pp. 76–89. ISBN   3-456-00390-0.
  46. Hill DR, Bowery NG (March 1981). "3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain". Nature. 290 (5802): 149–52. Bibcode:1981Natur.290..149H. doi:10.1038/290149a0. PMID   6259535. S2CID   4335907.
  47. Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (March 1997). "Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors". Nature. 386 (6622): 239–46. Bibcode:1997Natur.386..239K. doi:10.1038/386239a0. PMID   9069281. S2CID   4345443.
  48. Enna SJ (October 1997). "GABAB receptor agonists and antagonists: pharmacological properties and therapeutic possibilities". Expert Opin Investig Drugs. 6 (10): 1319–25. doi: 10.1517/13543784.6.10.1319 . PMID   15989503.
  49. Bowery, N. G.; Enna, S. J. (1997). The GABA receptors. Totowa, NJ: Humana Press. ISBN   0-89603-458-5.
  50. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (December 1998). "GABA(B)-receptor subtypes assemble into functional heteromeric complexes". Nature. 396 (6712): 683–7. Bibcode:1998Natur.396..683K. doi:10.1038/25360. PMID   9872317. S2CID   4421681.
  51. Kaupmann K, Schuler V, Mosbacher J, Bischoff S, Bittiger H, Heid J, Froestl W, Leonhard S, Pfaff T, Karschin A, Bettler B (December 1998). "Human γ-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels". Proc. Natl. Acad. Sci. U.S.A. 95 (25): 14991–6. Bibcode:1998PNAS...9514991K. doi: 10.1073/pnas.95.25.14991 . PMC   24563 . PMID   9844003.
  52. Marshall FH, Jones KA, Kaupmann K, Bettler B (October 1999). "GABA receptors - the first 7TM heterodimers". Trends Pharmacol. Sci. 20 (10): 396–9. doi:10.1016/S0165-6147(99)01383-8. PMID   10498952.
  53. Marshall FH, White J, Main M, Green A, Wise A (August 1999). "GABA(B) receptors function as heterodimers". Biochem. Soc. Trans. 27 (4): 530–5. doi:10.1042/bst0270530. PMID   10917635.
  54. Bowery NG, Enna SJ (January 2000). "gamma-aminobutyric acid(B) receptors: first of the functional metabotropic heterodimers". J. Pharmacol. Exp. Ther. 292 (1): 2–7. PMID   10604925.
  55. Enna SJ (2001). "GABAB receptor signaling pathways". In Möhler H (ed.). Pharmacology of GABA and Glycine Neurotransmission. Handbook of Experimental Pharmacology. Vol. 150. Berlin: Springer. pp. 329–342. ISBN   3-540-67616-3.
  56. Kanwal, Simab; Incharoensakdi, Aran (2020-01-01). "GABA synthesis mediated by γ-aminobutanal dehydrogenase in Synechocystis sp. PCC6803 with disrupted glutamate and α-ketoglutarate decarboxylase genes" . Plant Science. 290: 110287. doi:10.1016/j.plantsci.2019.110287. ISSN   0168-9452. PMID   31779897. S2CID   204162907.
  57. García-Martín, Elena; Martínez, Carmen; Serrador, Mercedes; Alonso-Navarro, Hortensia; Navacerrada, Francisco; Esguevillas, Gara; García-Albea, Esteban; Agúndez, José A. G.; Jiménez-Jiménez, Félix Javier (2017). "Gamma‐Aminobutyric Acid (Gaba) Receptors Rho (Gabrr) Gene Polymorphisms and Risk for Migraine". Headache: The Journal of Head and Face Pain. 57 (7): 1118–1135. doi:10.1111/head.13122. PMID   28699326. S2CID   12303665.
  58. García-Martín, Elena; Martínez, Carmen; Alonso-Navarro, Hortensia; Benito-León, Julián; Lorenzo-Betancor, Oswaldo; Pastor, Pau; Puertas, Inmaculada; Rubio, Lluisa; López-Alburquerque, Tomás; Agúndez, José A. G.; Jiménez-Jiménez, Félix Javier (2011). "Gamma-aminobutyric acid (GABA) receptor rho (GABRR) polymorphisms and risk for essential tremor". Journal of Neurology. 258 (2): 203–211. doi:10.1007/s00415-010-5708-z. PMID   20820800. S2CID   22082250.
  59. Jiménez-Jiménez, Félix Javier; Esguevillas, Gara; Alonso-Navarro, Hortensia; Zurdo, Martín; Turpín-Fenoll, Laura; Millán-Pascual, Jorge; Adeva-Bartolomé, Teresa; Cubo, Esther; Navacerrada, Francisco; Amo, Gemma; Rojo-Sebastián, Ana; Rubio, Lluisa; Díez-Fairén, Mónica; Pastor, Pau; Calleja, Marisol; Plaza-Nieto, José Francisco; Pilo-De-La-Fuente, Belén; Arroyo-Solera, Margarita; García-Albea, Esteban; Agúndez, José A. G.; García-Martín, Elena (2018). "Gamma-aminobutyric acid (GABA) receptors genes polymorphisms and risk for restless legs syndrome". The Pharmacogenomics Journal. 18 (4): 565–577. doi:10.1038/s41397-018-0023-7. PMID   29720720. S2CID   13756330.
  60. Lo, W.-S.; Lau, C.-F.; Xuan, Z.; Chan, C.-F.; Feng, G.-Y.; He, L.; Cao, Z.-C.; Liu, H.; Luan, Q.-M.; Xue, H. (June 2004). "Association of SNPs and haplotypes in GABA A receptor β 2 gene with schizophrenia". Molecular Psychiatry. 9 (6): 603–608. doi:10.1038/sj.mp.4001461. ISSN   1476-5578. PMID   14699426. S2CID   5567422.
  61. Koulentaki, Mairi; Kouroumalis, Elias (2018-06-01). "GABAA receptor polymorphisms in alcohol use disorder in the GWAS era". Psychopharmacology. 235 (6): 1845–1865. doi:10.1007/s00213-018-4918-4. ISSN   1432-2072. PMID   29721579. S2CID   13744792.
  62. Chen, Jianhuan; Tsang, Shui-Ying; Zhao, Cun-You; Pun, Frank W.; Yu, Zhiliang; Mei, Lingling; Lo, Wing-Sze; Fang, Shisong; Liu, Hua; Stöber, Gerald; Xue, Hong (2009-12-01). "GABRB2 in schizophrenia and bipolar disorder: disease association, gene expression and clinical correlations". Biochemical Society Transactions. 37 (6): 1415–1418. doi:10.1042/BST0371415. ISSN   0300-5127. PMID   19909288. S2CID   10742771.