Formyl peptide receptor 2

Last updated
FPR2
Identifiers
Aliases FPR2 , ALXR, FMLP-R-II, FMLPX, FPR2A, FPRH1, FPRH2, FPRL1, HM63, LXA4R, formyl peptide receptor 2, ALX
External IDs OMIM: 136538 MGI: 1278319 HomoloGene: 74395 GeneCards: FPR2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001005738
NM_001462

NM_008039

RefSeq (protein)

NP_001005738
NP_001453

NP_032065

Location (UCSC) Chr 19: 51.75 – 51.77 Mb Chr 17: 18.11 – 18.11 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

N-formyl peptide receptor 2 (FPR2) is a G-protein coupled receptor (GPCR) located on the surface of many cell types of various animal species. The human receptor protein is encoded by the FPR2 gene and is activated to regulate cell function by binding any one of a wide variety of ligands including not only certain N-Formylmethionine-containing oligopeptides such as N-Formylmethionine-leucyl-phenylalanine (FMLP) but also the polyunsaturated fatty acid metabolite of arachidonic acid, lipoxin A4 (LXA4). [5] [6] Because of its interaction with lipoxin A4, FPR2 is also commonly named the ALX/FPR2 or just ALX receptor.

Contents

Expression

The FPR2 receptor is expressed on human neutrophils, eosinophils, monocytes, macrophages, T cells, synovial fibroblasts, and intestinal and airway epithelium. [7]

Function

Many oligopeptides that possess an N-Formylmethionine N-terminal residue such as the prototypical tripeptide N-Formylmethionine-leucyl-phenylalanine (i.e. FMLP), are products of the protein synthesis conducted by bacteria. They stimulate granulocytes to migrate directionally (see chemotaxis) and become active in engulfing (see phagocytosis) and killing bacteria and thereby contribute to host defense by directing the innate immune response of acute inflammation to sites of bacterial invasion. Early studies suggested that these formyl oligopeptides operated by a Receptor (biochemistry) mechanism. Accordingly, the human leukocyte cell line, HL-60 promyelocytes (which do not respond to FMLP), was purposely differentiated to granulocytes (which do respond to FMLP) and used to partially purify [8] and clone a gene that when transfected into FMLP-unresponsive cells bestowed responsiveness to this and other N-formyl oligopeptides. [9] [10] [11] [12] [13] This receptor was initially named the formyl peptide receptor (i.e. FPR). However, a series of subsequent studies cloned two genes that encoded receptor-like proteins with amino acid sequences very similar to that of FPR. [14] [15] [16] The three receptors had been given various names but are now termed formyl peptide receptor 1 (i.e. FPR1) for the first defined receptor, FPR2, and Formyl peptide receptor 3 (i.e. FPR3). FPR2 and FPR3 are termed formyl peptide receptors base on the similarities of their amino acid sequences to that of FPR1 rather than any preferences for binding formyl peptides. Indeed, FPR2 prefers a very different set of ligands and has some very different functions than FPR1 while FPR3 does not bind FMLP or many other N-formyl peptides which bind to FPR1 or FPR2. [17] A major function for FPR2 is binding certain specialized pro-resolving mediators (SPMs), i.e. lipoxin (Lx)A4, and AT-LxA4 (metabolites of arachidonic acid) as well as resolvin D1 (RvD)1, RvD2, and AT-RvD1 (metabolites of docosahexaenoic acid) and thereby to mediate these metabolites activities in inhibiting and resolving inflammation (see Specialized pro-resolving mediators). However, FPR2 also mediates responses to a wide range of polypeptides and proteins which may serve to promote inflammation or regulate activities not directly involving inflammation. The function of FPR3 is not clear.

Nomenclature

Confusingly, there are two "standard" nomenclatures for FPR receptors and their genes, the first used, FPR, FPR1, and FPR2 and its replacement, FPR1, FPR2, and FPR3. The latter nomenclature is recommended by the International Union of Basic and Clinical Pharmacology [17] and is used here. Other previously used names for FPR1 are NFPR, and FMLPR; for FPR2 are FPRH1, FPRL1, RFP, LXA4R, ALXR, FPR2/ALX, HM63, FMLPX, and FPR2A; and for FPR3 are FPRH2, FPRL2, and FMLPY. [17]

Genes

Human

The human FPR2 gene encodes the 351 amino acid receptor, FPR2, within an intronless open reading frame. It forms a cluster with FPR1 and FPR3 genes on chromosome 19q.13.3 in the order of FPR1, FPR2, and FPR3; this cluster also includes the genes for two other chemotactic factor receptors, the G protein-coupled C5a receptor (also termed CD88) and a second C5a receptor, GPR77 (i.e. C5a2 or C5L2), which has the structure of G protein receptors but apparently does not couple to G proteins and is of uncertain function. [18] The FPR1, FPR2, and FPR3 paralogs, based on phylogenetic analysis, originated from a common ancestor with early duplication of FPR1 and FPR2/FPR3 splitting with FPR3 originating from the latest duplication event near the origin of primates. [19]

Mouse

Mice have no less than 7 FPR receptors encoded by 7 genes that localize to chromosome 17A3.2 in the following order: Fpr1, Fpr-rs2 (or fpr2), Fpr-rs1 (or LXA4R), Fpr-rs4, Fpr-rs7, Fpr-rs7, Fpr-rs6, and Fpr-rs3; this locus also contains Pseudogenes ψFpr-rs2 and ψFpr-rs3 (or ψFpr-rs5) which lie just after Fpr-rs2 and Fpr-rs1, respectively. The 7 mouse FPR receptors have ≥50% amino acid sequence identity with each other as well as with the three human FPR receptors. [20] Fpr2 and mFpr-rs1 bind with high affinity and respond to lipoxins but have little or no affinity for, and responsiveness to, formyl peptides; they thereby share key properties with human FPR2; [21] [22] [23]

Gene knockout studies

The large number of mouse compared to human FPR receptors makes it difficult to extrapolate human FPR functions based on genetic (e.g. gene knockout or forced overexpression) or other experimental manipulations of the FPR receptors in mice. In any event, combined disruption of the Fpr2 and Fpr3 genes causes mice to mount enhanced acute inflammatory responses as evidenced in three models, intestine inflammation caused by mesenteric artery ischemia-reperfusion, paw swelling caused by carrageenan injection, and arthritis caused by the intraperatoneal injection of arthritis-inducing serum. [24] Since Fpr2 gene knockout mice exhibit a faulty innate immune response to intravenous listeria monocytogenes injection, [25] these results suggest that the human FPR2 receptor and mouse Fpr3 receptor have equivalent functions in dampening at least certain inflammatory response.

Other species

Rats express an ortholog of FPR2 (74% amino acid sequence identity) with high affinity for lipoxin A4. [20]

Cellular and tissue distribution

FPL2 is often co-expressed with FPR1. It is widely expressed by circulating blood neutrophils, eosinophils, basophils, and monocytes; lymphocyte T cells and B cells; tissue Mast cells, macrophages, fibroblasts, and immature dendritic cells; vascular endothelial cells; neural tissue glial cells, astrocytes, and neuroblastoma cells; liver hepatocytes; various types of epithelial cells; and various types of multicellular tissues. [20] [26] [27] [28] [29]

FPR2 is also known as the LXA4 or ALX/FPR2 receptor based on studies finding that is a high affinity receptor for the arachidonic acid metabolite, lipoxin A4 (LXA4), and thereafter for a related arachidonic acid metabolite, the Epi-lipoxin, aspirin-triggered lipoxin A4 (i.e. ATL, 15-epi-LXA4) and a docosahexaenoic acid metabolite, resolvin D1 (i.e. RvD1); these three cell-derived fatty acid metabolites act to inhibit and resolve inflammatory responses. [30] [31] [32] [33] [34] This receptor was previously known as an orphan receptor, termed RFP, obtained by screening myeloid cell-derived libraries with a FMLP-like probe. [35] [36] [37] In addition to LXA4, LTA, RvD1, and FMLP, FPR2 binds a wide range of polypeptides, proteins, and products derived from these polypeptides and proteins. One or more of these various ligands may be involved not only in regulating inflammation but also be involved in the development of obesity, cognitive decline, reproduction, neuroprotection, and cancer. [38] However, the most studied and accepted role for FPR2 receptors is in mediating the actions of the cited lipoxins and resolvins in dampening and resolving a wide range of inflammatory reactions (see lipoxin, Epi-lipoxin, and resolvin). [39] [40]

The following is a list of FPR2/ALX ligands and in parentheses their suggested pro-inflammatory or anti-inflammatory actions base on in vitro and animal model studies: a) bacterial and mitochondrial N-formyl peptides such as FMLP (pro-inflammatory but perhaps less significant or insignificant compared to the actions of LXA4, ATL, and RvD1 on FPR2);

b) Hp(2-20), a non-formyl peptide derived from Helicobacter pylori (pro-inflammatory by promoting inflammatory responses against this stomach ulcer-causing pathogen);

c) T21/DP107 and N36, which are N-acetylated polypeptides derived from the gp41 envelope protein of the HIV-1 virus, F peptide, which is derived from gp120 protein of the HIV-1 Bru strain virus, and V3 peptide, which is derived from a linear sequence of the V3 region of the HIV-1 MN strain virus (unknown effect on inflammation and HIV infection);

d) the N-terminally truncated form of the chemotactic chemokine, CCL23, termed CCL23 splice variant CCL23β(amino acids 22–137) and SHAAGtide, which is a product of CCL23β cleavage by pro-inflammatory proteases (pro-inflammatory); e) two N-acetyl peptides, Ac2–26 and Ac9–25 of Annexin A1 (ANXA1 or lipocortin 1), which at high concentrations fully stimulate neutrophil functions but at lower concentrations leave neutrophils desensitized (i.e. unresponsive) to the chemokine IL-8 (CXCL8) (pro-inflammatory and anti-inflammatory, respectively, highlighting the duality of FPR2/ALX functions in inflammation);

f) Amyloid beta(1–42) fragment and prion protein fragment PrP(106–126) (pro-inflammatory, suggesting a role for FPR2/ALX in the inflammatory components of diverse amyloid-based diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, prion-based diseases such as Transmissible spongiform encephalopathy, Creutzfeldt–Jakob disease, and Kuru), and numerous other neurological and non-neurological diseases [see amyloid]);

g) the neuroprotective peptide, Humanin (anti-inflammatory by inhibiting the pro-inflammatory effects of Amalyoid beta(1-42) in promoting Alzheimer's disease-related inflammation);

h) two cleaved soluble fragments of UPARAP which is the Urokinase-type plasminogen activator receptor (uPAR), D2D3(88–274) and uPAR(84–95) (pro-inflammatory);

i) LL-37 and CRAMP, which are enzymatic cleavage products of human and rat, respectively, Cathelicidin-related antimicrobial peptides, numerous Pleurocidins which are a family of cationic antimicrobial peptides found in fish and other vertebrates structurally and functionally similar to cathelicidins, [29] and Temporin  A, which is a frog-derived antimicrobial peptide ((pro-inflammatory products derived from host anti-microbial proteins); and

j) Pituitary adenylate cyclase-activating polypeptide 27 (pro-inflammatory). [17] [41]

See also

Related Research Articles

<span class="mw-page-title-main">Eicosanoid</span> Class of compounds

Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the proximity of their cells of origin. Eicosanoids may also act as endocrine agents to control the function of distant cells.

<span class="mw-page-title-main">Lipoxin</span> Acronym for lipoxygenase interaction product

A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. They are categorized as nonclassic eicosanoids and members of the specialized pro-resolving mediators (SPMs) family of polyunsaturated fatty acid (PUFA) metabolites. Like other SPMs, LXs form during, and then act to resolve, inflammatory responses. Initially, two lipoxins were identified, lipoxin A4 (LXA4) and LXB4, but more recent studies have identified epimers of these two LXs: the epi-lipoxins, 15-epi-LXA4 and 15-epi-LXB4 respectively.

<span class="mw-page-title-main">Resolvin</span> Class of chemical compounds

Resolvins are specialized pro-resolving mediators (SPMs) derived from omega-3 fatty acids, primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as well as from two isomers of docosapentaenoic acid (DPA), one omega-3 and one omega-6 fatty acid. As autacoids similar to hormones acting on local tissues, resolvins are under preliminary research for their involvement in promoting restoration of normal cellular function following the inflammation that occurs after tissue injury. Resolvins belong to a class of polyunsaturated fatty acid (PUFA) metabolites termed specialized proresolving mediators (SPMs).

<i>N</i>-Formylmethionine Chemical compound

N-Formylmethionine is a derivative of the amino acid methionine in which a formyl group has been added to the amino group. It is specifically used for initiation of protein synthesis from bacterial and organellar genes, and may be removed post-translationally.

The formyl peptide receptors (FPR) belong to a class of G protein-coupled receptors involved in chemotaxis. In humans, there are three formyl peptide receptor isoforms, each encoded by a separate gene that are named FPR1, FPR2, and FPR3. These receptors were originally identified by their ability to bind N-formyl peptides such as N-formylmethionine produced by the degradation of either bacterial or host cells. Hence formyl peptide receptors are involved in mediating immune cell response to infection. These receptors may also act to suppress the immune system under certain conditions. The close phylogenetic relation of signaling in chemotaxis and olfaction was recently proved by detection formyl peptide receptor like proteins as a distinct family of vomeronasal organ chemosensors in mice.

Most of the eicosanoid receptors are integral membrane protein G protein-coupled receptors (GPCRs) that bind and respond to eicosanoid signaling molecules. Eicosanoids are rapidly metabolized to inactive products and therefore are short-lived. Accordingly, the eicosanoid-receptor interaction is typically limited to a local interaction: cells, upon stimulation, metabolize arachidonic acid to an eicosanoid which then binds cognate receptors on either its parent cell or on nearby cells to trigger functional responses within a restricted tissue area, e.g. an inflammatory response to an invading pathogen. In some cases, however, the synthesized eicosanoid travels through the blood to trigger systemic or coordinated tissue responses, e.g. prostaglandin (PG) E2 released locally travels to the hypothalamus to trigger a febrile reaction. An example of a non-GPCR receptor that binds many eicosanoids is the PPAR-γ nuclear receptor.

Arachidonate 5-lipoxygenase, also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme that in humans is encoded by the ALOX5 gene. Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (EFA) substrates into leukotrienes as well as a wide range of other biologically active products. ALOX5 is a current target for pharmaceutical intervention in a number of diseases.

<span class="mw-page-title-main">TRPV3</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel, subfamily V, member 3, also known as TRPV3, is a human gene encoding the protein of the same name.

<span class="mw-page-title-main">ALOX15</span> Lipoxygenase found in humans

ALOX15 is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function

<i>N</i>-Formylmethionine-leucyl-phenylalanine Chemical compound

N-Formylmethionyl-leucyl-phenylalanine is an N-formylated tripeptide and sometimes simply referred to as chemotactic peptide is a potent polymorphonuclear leukocyte (PMN) chemotactic factor and is also a macrophage activator.

<span class="mw-page-title-main">Serum amyloid A1</span> Protein-coding gene in the species Homo sapiens

Serum amyloid A1 (SAA1) is a protein that in humans is encoded by the SAA1 gene. SAA1 is a major acute-phase protein mainly produced by hepatocytes in response to infection, tissue injury and malignancy. When released into blood circulation, SAA1 is present as an apolipoprotein associated with high-density lipoprotein (HDL). SAA1 is a major precursor of amyloid A (AA), the deposit of which leads to inflammatory amyloidosis.

<span class="mw-page-title-main">CMKLR1</span> Protein-coding gene in humans

Chemokine like receptor 1 also known as ChemR23 is a protein that in humans is encoded by the CMKLR1 gene. Chemokine receptor-like 1 is a G protein-coupled receptor for the chemoattractant adipokine chemerin and the omega-3 fatty acid eicosapentaenoic acid-derived specialized pro-resolving molecule, resolvin E1. The murine receptor that shares almost 80% homology with the human receptor, is called Dez.

<span class="mw-page-title-main">Formyl peptide receptor 3</span> Protein-coding gene in the species Homo sapiens

N-formyl peptide receptor 3 (FPR3) is a receptor protein that in humans is encoded by the FPR3 gene.

<span class="mw-page-title-main">NAGly receptor</span> Protein-coding gene in the species Homo sapiens

N-Arachidonyl glycine receptor, also known as G protein-coupled receptor 18 (GPR18), is a protein that in humans is encoded by the GPR18 gene. Along with the other previously "orphan" receptors GPR55 and GPR119, GPR18 has been found to be a receptor for endogenous lipid neurotransmitters, several of which also bind to cannabinoid receptors. It has been found to be involved in the regulation of intraocular pressure.

<span class="mw-page-title-main">GPR32</span> Human biochemical receptor

G protein-coupled receptor 32, also known as GPR32 or the RvD1 receptor, is a human receptor (biochemistry) belonging to the rhodopsin-like subfamily of G protein-coupled receptors.

<span class="mw-page-title-main">Maresin</span> Chemical compound

Maresin 1 (MaR1 or 7R,14S-dihydroxy-4Z,8E,10E,12Z,16Z,19Z-docosahexaenoic acid) is a macrophage-derived mediator of inflammation resolution coined from macrophage mediator in resolving inflammation. Maresin 1, and more recently defined maresins, are 12-lipoxygenase-derived metabolites of the omega-3 fatty acid, docosahexaenoic acid (DHA), that possess potent anti-inflammatory, pro-resolving, protective, and pro-healing properties similar to a variety of other members of the specialized proresolving mediators (SPM) class of polyunsaturated fatty acid (PUFA) metabolites. SPM are dihydroxy, trihydroxy, and epoxy-hydroxy metabolites of long chain PUFA made by certain dioxygenase enzymes viz., cyclooxygenases and lipoxygenases. In addition to the maresins, this class of mediators includes: the 15-lipoxygenase (i.e. ALOX15 and/or possibly ALOX15B)-derived Lipoxin A4 and B4 metabolites of the omega 6 fatty acid, arachidonic acid; the cyclooxygenase 2-derived Resolvin E series metabolites of the omega 3 fatty acid, eicosapentaenoic acid; certain 15-lipoxygenase-derived Resolvin D series metabolites of DHA; certain other 15-lipoxygenase-derived protectin D1 and related metabolites of DHA; and the more recently defined and therefore less fully studied 15-lipoxygenase-derived Resolvin Dn-3DPA metabolites of the omega-3 fatty acid n-3 docosapentaenoic acid (n-3 DPA or clupanodonic acid), the cyclooxygenase 2-derived Resolvin T metabolites of this clupanodonic acid, and the 15-lipoxygenase-derived products of the N-acetylated fatty acid amide of the DHA metabolite, docosahexaenoyl ethanolamide (see resolvins).

<span class="mw-page-title-main">15-Hydroxyeicosatetraenoic acid</span> Chemical compound

15-Hydroxyeicosatetraenoic acid (also termed 15-HETE, 15(S)-HETE, and 15S-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. Various cell types metabolize arachidonic acid to 15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HpETE). This initial hydroperoxide product is extremely short-lived in cells: if not otherwise metabolized, it is rapidly reduced to 15(S)-HETE. Both of these metabolites, depending on the cell type which forms them, can be further metabolized to 15-oxo-eicosatetraenoic acid (15-oxo-ETE), 5(S),15(S)-dihydroxy-eicosatetraenoic acid (5(S),15(S)-diHETE), 5-oxo-15(S)-hydroxyeicosatetraenoic acid (5-oxo-15(S)-HETE), a subset of specialized pro-resolving mediators viz., the lipoxins, a class of pro-inflammatory mediators, the eoxins, and other products that have less well-defined activities and functions. Thus, 15(S)-HETE and 15(S)-HpETE, in addition to having intrinsic biological activities, are key precursors to numerous biologically active derivatives.

<span class="mw-page-title-main">Formyl peptide receptor 1</span> Protein-coding gene in the species Homo sapiens

Formyl peptide receptor 1 is a cell surface receptor protein that in humans is encoded by the formyl peptide receptor 1 (FPR1) gene. This gene encodes a G protein-coupled receptor cell surface protein that binds and is activated by N-Formylmethionine-containing oligopeptides, particularly N-Formylmethionine-leucyl-phenylalanine (FMLP). FPR1 is prominently expressed by mammalian phagocytic and blood leukocyte cells where it functions to mediate these cells' responses to the N-formylmethionine-containing oligopeptides which are released by invading microorganisms and injured tissues. FPR1 directs these cells to sites of invading pathogens or disrupted tissues and then stimulates these cells to kill the pathogens or to remove tissue debris; as such, it is an important component of the innate immune system that operates in host defense and damage control.

<span class="mw-page-title-main">HEBP1</span>

Heme binding protein 1 is a protein that in humans is encoded by the HEBP1 gene.

Specialized pro-resolving mediators are a large and growing class of cell signaling molecules formed in cells by the metabolism of polyunsaturated fatty acids (PUFA) by one or a combination of lipoxygenase, cyclooxygenase, and cytochrome P450 monooxygenase enzymes. Pre-clinical studies, primarily in animal models and human tissues, implicate SPM in orchestrating the resolution of inflammation. Prominent members include the resolvins and protectins.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000171049 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000052270 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN (Mar 1997). "Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor". The Journal of Biological Chemistry. 272 (11): 6972–8. doi: 10.1074/jbc.272.11.6972 . PMID   9054386.
  6. "Entrez Gene: FPR2 formyl peptide receptor 2".
  7. Duvall MG, Levy BD (2015). "DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation". European Journal of Pharmacology. 785: 144–55. doi:10.1016/j.ejphar.2015.11.001. PMC   4854800 . PMID   26546247.
  8. Polakis PG, Uhing RJ, Snyderman R (Apr 1988). "The formylpeptide chemoattractant receptor copurifies with a GTP-binding protein containing a distinct 40-kDa pertussis toxin substrate". The Journal of Biological Chemistry. 263 (10): 4969–76. doi: 10.1016/S0021-9258(18)68882-9 . PMID   2832415.
  9. Boulay F, Tardif M, Brouchon L, Vignais P (May 1990). "Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA". Biochemical and Biophysical Research Communications. 168 (3): 1103–9. doi:10.1016/0006-291x(90)91143-g. PMID   2161213.
  10. Boulay F, Tardif M, Brouchon L, Vignais P (Dec 1990). "The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors". Biochemistry. 29 (50): 11123–33. doi:10.1021/bi00502a016. PMID   2176894.
  11. Murphy PM, Gallin EK, Tiffany HL, Malech HL (Feb 1990). "The formyl peptide chemoattractant receptor is encoded by a 2 kilobase messenger RNA. Expression in Xenopus oocytes". FEBS Letters. 261 (2): 353–7. doi:10.1016/0014-5793(90)80590-f. PMID   1690150. S2CID   22817786.
  12. Coats WD, Navarro J (Apr 1990). "Functional reconstitution of fMet-Leu-Phe receptor in Xenopus laevis oocytes". The Journal of Biological Chemistry. 265 (11): 5964–6. doi: 10.1016/S0021-9258(19)39276-2 . PMID   2156834.
  13. Perez HD, Holmes R, Kelly E, McClary J, Chou Q, Andrews WH (Nov 1992). "Cloning of the gene coding for a human receptor for formyl peptides. Characterization of a promoter region and evidence for polymorphic expression". Biochemistry. 31 (46): 11595–9. doi:10.1021/bi00161a044. PMID   1445895.
  14. Bao L, Gerard NP, Eddy RL, Shows TB, Gerard C (Jun 1992). "Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19". Genomics. 13 (2): 437–40. doi:10.1016/0888-7543(92)90265-t. PMID   1612600.
  15. Murphy PM, Ozçelik T, Kenney RT, Tiffany HL, McDermott D, Francke U (Apr 1992). "A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family". The Journal of Biological Chemistry. 267 (11): 7637–43. doi: 10.1016/S0021-9258(18)42563-X . PMID   1373134.
  16. Ye RD, Cavanagh SL, Quehenberger O, Prossnitz ER, Cochrane CG (Apr 1992). "Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor". Biochemical and Biophysical Research Communications. 184 (2): 582–9. doi:10.1016/0006-291x(92)90629-y. PMID   1374236.
  17. 1 2 3 4 Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM (Jun 2009). "International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family". Pharmacological Reviews. 61 (2): 119–61. doi:10.1124/pr.109.001578. PMC   2745437 . PMID   19498085.
  18. Li R, Coulthard LG, Wu MC, Taylor SM, Woodruff TM (Mar 2013). "C5L2: a controversial receptor of complement anaphylatoxin, C5a". FASEB Journal. 27 (3): 855–64. doi: 10.1096/fj.12-220509 . PMID   23239822. S2CID   24870278.
  19. Muto Y, Guindon S, Umemura T, Kőhidai L, Ueda H (Feb 2015). "Adaptive evolution of formyl peptide receptors in mammals". Journal of Molecular Evolution. 80 (2): 130–41. Bibcode:2015JMolE..80..130M. doi:10.1007/s00239-015-9666-z. PMID   25627928. S2CID   14266716.
  20. 1 2 3 Migeotte I, Communi D, Parmentier M (Dec 2006). "Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses". Cytokine & Growth Factor Reviews. 17 (6): 501–19. doi:10.1016/j.cytogfr.2006.09.009. PMID   17084101.
  21. He HQ, Liao D, Wang ZG, Wang ZL, Zhou HC, Wang MW, Ye RD (Feb 2013). "Functional characterization of three mouse formyl peptide receptors". Molecular Pharmacology. 83 (2): 389–98. doi:10.1124/mol.112.081315. PMC   4170117 . PMID   23160941.
  22. Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN (May 1997). "Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors". The Journal of Experimental Medicine. 185 (9): 1693–704. doi:10.1084/jem.185.9.1693. PMC   2196289 . PMID   9151906.
  23. Vaughn MW, Proske RJ, Haviland DL (Sep 2002). "Identification, cloning, and functional characterization of a murine lipoxin A4 receptor homologue gene". Journal of Immunology. 169 (6): 3363–9. doi: 10.4049/jimmunol.169.6.3363 . PMID   12218158.
  24. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D'Acquisto F, Buckingham JC, Perretti M, Flower RJ (Mar 2010). "Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation". Journal of Immunology. 184 (5): 2611–9. doi:10.4049/jimmunol.0903526. PMC   4256430 . PMID   20107188.
  25. Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A, Gao JL, Murphy PM, Wang JM (2012). "Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes". Scientific Reports. 2: 786. Bibcode:2012NatSR...2E.786L. doi:10.1038/srep00786. PMC   3493074 . PMID   23139859.
  26. de Paulis A, Prevete N, Fiorentino I, Walls AF, Curto M, Petraroli A, Castaldo V, Ceppa P, Fiocca R, Marone G (Jun 2004). "Basophils infiltrate human gastric mucosa at sites of Helicobacter pylori infection, and exhibit chemotaxis in response to H. pylori-derived peptide Hp(2-20)". Journal of Immunology. 172 (12): 7734–43. doi: 10.4049/jimmunol.172.12.7734 . PMID   15187157.
  27. Svensson L, Redvall E, Björn C, Karlsson J, Bergin AM, Rabiet MJ, Dahlgren C, Wennerås C (Jul 2007). "House dust mite allergen activates human eosinophils via formyl peptide receptor and formyl peptide receptor-like 1". European Journal of Immunology. 37 (7): 1966–77. doi: 10.1002/eji.200636936 . PMID   17559171.
  28. Scanzano A, Schembri L, Rasini E, Luini A, Dallatorre J, Legnaro M, Bombelli R, Congiu T, Cosentino M, Marino F (Feb 2015). "Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes". Inflammation Research. 64 (2): 127–35. doi:10.1007/s00011-014-0791-8. PMID   25561369. S2CID   17721865.
  29. 1 2 Pundir P, Catalli A, Leggiadro C, Douglas SE, Kulka M (Jan 2014). "Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor". Mucosal Immunology. 7 (1): 177–87. doi: 10.1038/mi.2013.37 . PMID   23839065. S2CID   23300384.
  30. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN (Jan 2010). "Resolvin D1 binds human phagocytes with evidence for proresolving receptors". Proceedings of the National Academy of Sciences of the United States of America. 107 (4): 1660–5. Bibcode:2010PNAS..107.1660K. doi: 10.1073/pnas.0907342107 . PMC   2824371 . PMID   20080636.
  31. Bento AF, Claudino RF, Dutra RC, Marcon R, Calixto JB (Aug 2011). "Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice". Journal of Immunology. 187 (4): 1957–69. doi: 10.4049/jimmunol.1101305 . PMID   21724996.
  32. Fiore S, Romano M, Reardon EM, Serhan CN (Jun 1993). "Induction of functional lipoxin A4 receptors in HL-60 cells". Blood. 81 (12): 3395–403. doi: 10.1182/blood.V81.12.3395.3395 . PMID   8389617.
  33. Fiore S, Maddox JF, Perez HD, Serhan CN (Jul 1994). "Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor". The Journal of Experimental Medicine. 180 (1): 253–60. doi:10.1084/jem.180.1.253. PMC   2191537 . PMID   8006586.
  34. Gronert K, Martinsson-Niskanen T, Ravasi S, Chiang N, Serhan CN (Jan 2001). "Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses". The American Journal of Pathology. 158 (1): 3–9. doi:10.1016/S0002-9440(10)63937-5. PMC   1850279 . PMID   11141472.
  35. Boulay F, Tardif M, Brouchon L, Vignais P (Dec 1990). "The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors". Biochemistry. 29 (50): 11123–33. doi:10.1021/bi00502a016. PMID   2176894.
  36. Murphy PM, Ozçelik T, Kenney RT, Tiffany HL, McDermott D, Francke U (Apr 1992). "A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family". The Journal of Biological Chemistry. 267 (11): 7637–43. doi: 10.1016/S0021-9258(18)42563-X . PMID   1373134.
  37. Perez HD, Holmes R, Kelly E, McClary J, Andrews WH (Sep 1992). "Cloning of a cDNA encoding a receptor related to the formyl peptide receptor of human neutrophils". Gene. 118 (2): 303–4. doi:10.1016/0378-1119(92)90208-7. PMID   1511907.
  38. Serhan CN, Chiang N, Dalli J (Apr 2015). "The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution". Seminars in Immunology. 27 (3): 200–15. doi:10.1016/j.smim.2015.03.004. PMC   4515371 . PMID   25857211.
  39. Romano M (2010). "Lipoxin and aspirin-triggered lipoxins". TheScientificWorldJournal. 10: 1048–64. doi: 10.1100/tsw.2010.113 . PMC   5763664 . PMID   20526535.
  40. Buckley CD, Gilroy DW, Serhan CN (Mar 2014). "Proresolving lipid mediators and mechanisms in the resolution of acute inflammation". Immunity. 40 (3): 315–27. doi:10.1016/j.immuni.2014.02.009. PMC   4004957 . PMID   24656045.
  41. Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG (May 2015). "The Role of Formylated Peptides and Formyl Peptide Receptor 1 in Governing Neutrophil Function during Acute Inflammation". The American Journal of Pathology. 185 (5): 1172–1184. doi:10.1016/j.ajpath.2015.01.020. PMC   4419282 . PMID   25791526.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.