GPR132 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | GPR132 , G2A, G protein-coupled receptor 132 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 606167; MGI: 1890220; HomoloGene: 8350; GeneCards: GPR132; OMA:GPR132 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
G protein coupled receptor 132, also termed G2A, is classified as a member of the proton sensing G protein coupled receptor (GPR) subfamily. Like other members of this subfamily, i.e. GPR4, GPR68 (OGR1), and GPR65 (TDAG8), G2A is a G protein coupled receptor that resides in the cell surface membrane, senses changes in extracellular pH, and can alter cellular function as a consequence of these changes. [5] Subsequently, G2A was suggested to be a receptor for lysophosphatidylcholine (LPC). However, the roles of G2A as a pH-sensor or LPC receptor are disputed. Rather, current studies suggest that it is a receptor for certain metabolites of the polyunsaturated fatty acid, linoleic acid.
G2A in humans is encoded by the GPR132 gene. [6] [7] The G2A gene is located on chromosome 14q32.3 codes for two alternative splice variants, the original one, G2A-a, and G2A-b, that consist of 380 and 371 amino acids, respectively; the two receptor variants, when expressed in Chinese hamster ovary cells, gave very similar results when analyzed for functionality. [8] G2A-a and G2A-b mRNA are expressed at similar levels in blood leukocytes ( macrophages, dendritic cells, neutrophils [PMN], mast cells, T lymphocytes and B lymphocytes at the highest levels followed by lower levels in spleen, lung and heart tissues; both variants are expressed at similar levels, and are almost equally induced by DNA synthesis inhibitors (hydroxyurea and cytosine arabinoside) or a differentiation inducer (all-trans retinoic acid) in HL-60 human leukemic cells. [8] [9]
The mouse G2A receptor, encoded by Gpr132, has 67% amino acid identity to human G2A but does not sense pH and does not respond to certain presumptive ligands (i.e. linoleic acid metabolites) that activate the human G2A. [8]
Targeted disruption of G2A in mice causes the development of a late onset (> 1 year) slowly progressive wasting and autoimmune disease characterized by lymphoid organ enlargement, lymphocytic infiltration into various tissues, glomerular immune complex deposition, and anti-nuclear autoantibodies. [10] Mice transplanted with bone marrow cells containing the BCR-ABL leukemia-inducing fusion gene but deficient in G2A exhibit expanded populations of leukemic cells compared to recipients of BCR-ABL-containing, G2A-sufficient bone marrow cells. [6] BCR-ABL is the oncogene of the Philadelphia chromosome that causes human Chronic myelogenous leukemia and is sometimes found associated with human acute lymphocytic leukemia and acute myelocytic leukemia; furthermore, the forced expression of BCR-ABL in cultured rodent cells induces the expression of G2A and the overexpression of G2A inhibits the malignant growth to these cells. [11] Thus, the G2A deficiency studies suggest that G2A functions in mice to suppress certain immune dysfunctions and BCR-ABL-related leukemic cell growth.
G2A was initially defined as one of the gene products whose production was stimulated in mouse pre-B lymphocytes (see Immunoglobulin heavy chain) by transfecting the cells with the human oncogene (i.e., cancer causing) BCR-ABL or by treating the cells with DNA damaging agents; its expression in these cells blocked their progression through the cell cycle specifically at the G2-M DNA damage checkpoint. [11] These studies allow that G2A limits the potentially malignant growth of certain cells in mice and possible could do so in humans. In addition, Gene knockout studies in mice find G2A to be necessary for suppressing an autoimmune syndrome (see G2A deficiency in mice). These results allow that G2A may function in blocking certain aspects of autoimmunity, particularly those involving the proliferation and tissue trafficking of lymphocytes. [10] Early studies first classified G2A as a proton-sensing receptor and suggested that G2A contributed to the regulation of proliferation in certain cells and the regulation of lymphocytes' contributions to certain immune functions by being activated by changes in extracellular pH. [12] Tissues suffering malignant cell growth, autoimmune reactions, poor blood flow ischemia, inflammation and allergy reactions, and tissue injury develop extracellular acidification due to the stimulation of anaerobic glycolysis; The proton-sensing function of G2A could be involved in combating or, in certain cases promoting these conditions. [9] An example implicating G2A's pH sensitivity in physiological responses involves pain perception. In rats, G2A, similar to other pH sensing GPCRs, is located in dorsal root ganglia neurons, small diameter neurons responsible for nociception, and other nerve tissues responsible for sensing pain; it is suggested that G2A in these nerve tissues detects the acid changes that occur in the extracellular media of injured tissues and signal for the perception of pain [13] [9]
However, the activity of the human G2A receptor and its mouse homolog are significantly less sensitive to pH fluctuations than other pH sensing GPCRs; indeed, in studies of thymocytes and splenocytes taken from mice deficient in either the G2A or another pH-sensing GPCR, TDAG8, TDAG8 was found critical while G2A was found dispensable for sensing pH changes. [14] Thus, the cited functions of G2A presumed due to its pH sensing ability could reflect other means for this receptor's activation.
A report working with human neutrophils proposed that G2A was a receptor for a phospholipid, lysophosphatidylcholine (LPC), and a Sphingomyelin, sphingosylphosphorylcholine. [15] However, these studies did not give evidence that these lyso-phospholipids actually bound to G2A; some 4 years later this report was withdrawn. [16] Nonetheless, many of LPC's activities do depend on G2A; more recent data suggest that rather than acting directly as a ligand that binds to G2A, LPC alters G2A's distribution within the cell by increasing its movement from the cell interior to the cell surface and/or by preventing its movement away from the cell surface to the cell interior. That is, in neutrophils and other cell types which have internal stores of G2A in membrane-bound secretory vesicles, G2A-containing vesicles continuously merge with and move back out of a cell's surface membrane. [17] Lyso-phospholipids may act as a)) detergents to increase a cell's permeability thereby allowing entry of small extracellular molecules such as ionic calcium which trigger the movement of the intracellular vesicles to the surface membrane or b) agents that intercalate or wedge into the cell's surface membrane to promote this vesicle movement or slow this vesicle movement out of the membrane . [17] [18] Such effects increase the expression of G2A at the cell surface membrane which, if G2A has a sub-stimulatory level of activity when normally express but stimulatory when it is overexpressed at the surface membrane, may lead to G2A-dependent cellular responses. With respect to this view, small decreases in extracellular pH reduce the internalization of G2A thereby increasing its surface membrane expression. [17]
LPCs that contain the unsaturated fatty acids hexadecanoic acid or octadecanoic acid bound to their sn-1 act to permeablize, while LPC with the monounsaturated fatty acid, oleic acid at sn-1 act to perturb target cell surface membranes. [18] While not involving G2A receptor binding, some actions of LPCs are G2A-dependent. For example, LPCs increase the bactericidal activity of rodent neutrophils, enhance hydrogen peroxide production in rodent neutrophils triggered by the ingestion of bacteria, stimulate the chemotaxis of human monocytes, and protect mice from the lethal effects of experimentally induced bacterial sepsis endotoxin. [19] [20] G2A may similarly be responsible for the activities of other phospholipids which, like LPC have not been shown to bind to G2A but still require G2A for certain of their activities viz., lysophosphatidylserine and lysophosphatidylethanolamine; these two lyso-phospholipids stimulate calcium signaling pathways in human neutrophils by a G2A dependent mechanism. [18] Furthermore, activated neutrophils greatly increase their surface membrane content of lysophosphatidylserine. In a mouse model, mouse neutrophils with increased levels of lysophosphatidylserine on their surface membrane due to cell activation or artificial addition showed an increase in there engulfment by mouse macrophages in vitro that was dependent on the expression of G2A in the macrophages and an increased rate of clearance in mice by a mechanism that was dependent on the expression of G2A by the mice. [21] [22] Lysophosphotidylserine-laden neutrophils stimulated the G2A-dependent production the proinflammatory mediator, prostaglandin E2, by macrophages in the in vitro studies and inhibited the production of pro-inflammatory mediators, interleukin-6 and keratinocyte chemoattractant, for in vivo studies. G2A is also involved in blood-borne lysophosphatidylcholine (LPC) mediated amplification of microbial TLR ligands induced inflammatory responses from human cells. [23] Taken together, these studies suggest that G2A, activated by certain phospholipids contributes not only to the development but also the resolution of certain inflammation and innate immune responses in mice and may also do so in humans.
The linoleic acid metabolites, 9(S)-hydroxyoctadecadienoic acid (HODE), 9(R)-HODE, and 13(R)-HODE, [8] [20] and the arachidonic acid metabolites 5(S)-hydroxyicosatetraenoic acid (HETE), 12(S)-HETE, 15(S)-HETE, and racemic 5-HETE, 12-HETE, 15-HETE, 8-HETE, 9-HETE, and 11-HETE stimulate Chinese hamster ovary cells made to express G2A; these effects, unlike those of phospholipids, appear to involve and require the binding of the metabolites to G2A as evidenced by the ability of the most potent of these metabolites, 9-HODE to stimulate G2A-dependent functions in membranes isolated from these cells. [8] 9-HODE induces cultured normal human epidermal keratinocytes to stop growing by inhibiting their cell cycle at the G1 stage; it also stimulates these cells to secrete three cytokines that stimulate keratinocyte growth vis., interleukin-6, interleukin-8, and GM-CSF. These activities are G2A-dependent. It is suggested that 9-HODE acts in human skin to block the proliferation of damaged cells while concurrently, by triggering the secretion of the cited cytokines, stimulating the proliferation of undamaged skin cells; these actions may thereby serve to rejuvenate skin damaged for example by UV light. [8]
Leukotrienes are a family of eicosanoid inflammatory mediators produced in leukocytes by the oxidation of arachidonic acid (AA) and the essential fatty acid eicosapentaenoic acid (EPA) by the enzyme arachidonate 5-lipoxygenase.
In cell biology, a phagosome is a vesicle formed around a particle engulfed by a phagocyte via phagocytosis. Professional phagocytes include macrophages, neutrophils, and dendritic cells (DCs).
C5a is a protein fragment released from cleavage of complement component C5 by protease C5-convertase into C5a and C5b fragments. C5b is important in late events of the complement cascade, an orderly series of reactions which coordinates several basic defense mechanisms, including formation of the membrane attack complex (MAC), one of the most basic weapons of the innate immune system, formed as an automatic response to intrusions from foreign particles and microbial invaders. It essentially pokes microscopic pinholes in these foreign objects, causing loss of water and sometimes death. C5a, the other cleavage product of C5, acts as a highly inflammatory peptide, encouraging complement activation, formation of the MAC, attraction of innate immune cells, and histamine release involved in allergic responses. The origin of C5 is in the hepatocyte, but its synthesis can also be found in macrophages, where it may cause local increase of C5a. C5a is a chemotactic agent and an anaphylatoxin; it is essential in the innate immunity but it is also linked with the adaptive immunity. The increased production of C5a is connected with a number of inflammatory diseases.
Chemokine ligand 9 (CCL9) is a small cytokine belonging to the CC chemokine family. It is also called macrophage inflammatory protein-1 gamma (MIP-1γ), macrophage inflammatory protein-related protein-2 (MRP-2) and CCF18, that has been described in rodents. CCL9 has also been previously designated CCL10, although this name is no longer in use. It is secreted by follicle-associated epithelium (FAE) such as that found around Peyer's patches, and attracts dendritic cells that possess the cell surface molecule CD11b and the chemokine receptor CCR1. CCL9 can activate osteoclasts through its receptor CCR1 suggesting an important role for CCL9 in bone resorption. CCL9 is constitutively expressed in macrophages and myeloid cells. The gene for CCL9 is located on chromosome 11 in mice.
Arachidonate 5-lipoxygenase, also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme that in humans is encoded by the ALOX5 gene. Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (EFA) substrates into leukotrienes as well as a wide range of other biologically active products. ALOX5 is a current target for pharmaceutical intervention in a number of diseases.
ALOX15 is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function
G-protein coupled receptor 31 also known as 12-(S)-HETE receptor is a protein that in humans is encoded by the GPR31 gene. The human gene is located on chromosome 6q27 and encodes a G-protein coupled receptor protein composed of 319 amino acids.
Psychosine receptor is a G protein-coupled receptor (GPCR) protein that in humans is encoded by the GPR65 gene. GPR65 is also referred to as TDAG8.
Probable G-protein coupled receptor 84 is a protein that in humans is encoded by the GPR84 gene.
Leukotriene B4 receptor 2, also known as BLT2, BLT2 receptor, and BLTR2, is an Integral membrane protein that is encoded by the LTB4R2 gene in humans and the Ltbr2 gene in mice.
Oxoeicosanoid receptor 1 (OXER1) also known as G-protein coupled receptor 170 (GPR170) is a protein that in humans is encoded by the OXER1 gene located on human chromosome 2p21; it is the principal receptor for the 5-Hydroxyicosatetraenoic acid family of carboxy fatty acid metabolites derived from arachidonic acid. The receptor has also been termed hGPCR48, HGPCR48, and R527 but OXER1 is now its preferred designation. OXER1 is a G protein-coupled receptor (GPCR) that is structurally related to the hydroxy-carboxylic acid (HCA) family of G protein-coupled receptors whose three members are HCA1 (GPR81), HCA2, and HCA3 ; OXER1 has 30.3%, 30.7%, and 30.7% amino acid sequence identity with these GPCRs, respectively. It is also related to the recently defined receptor, GPR31, for the hydroxyl-carboxy fatty acid 12-HETE.
5-Hydroxyeicosatetraenoic acid (5-HETE, 5(S)-HETE, or 5S-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. It is produced by diverse cell types in humans and other animal species. These cells may then metabolize the formed 5(S)-HETE to 5-oxo-eicosatetraenoic acid (5-oxo-ETE), 5(S),15(S)-dihydroxyeicosatetraenoic acid (5(S),15(S)-diHETE), or 5-oxo-15-hydroxyeicosatetraenoic acid (5-oxo-15(S)-HETE).
Lysophosphatidylcholines, also called lysolecithins, are a class of chemical compounds which are derived from phosphatidylcholines.
Proton-sensing G protein-coupled receptors are transmembrane receptors which sense acidic pH and include GPR132 (G2A), GPR4, GPR68 (OGR1) and GPR65 (TDAG8). These G protein-coupled receptors are activated when extracellular pH falls into the range of 6.4-6.8. The functional role of the low pH sensitivity of the proton-sensing G protein-coupled receptors is being studied in several tissues where cells respond to conditions of low pH including bone and inflamed tissues. The four known proton-sensing G protein-coupled receptors are Class A receptors in subfamily A15.
12-Hydroxyeicosatetraenoic acid (12-HETE) is a derivative of the 20 carbon polyunsaturated fatty acid, arachidonic acid, containing a hydroxyl residue at carbon 12 and a 5Z,8Z,10E,14Z Cis–trans isomerism configuration (Z=cis, E=trans) in its four double bonds. It was first found as a product of arachidonic acid metabolism made by human and bovine platelets through their 12S-lipoxygenase (i.e. ALOX12) enzyme(s). However, the term 12-HETE is ambiguous in that it has been used to indicate not only the initially detected "S" stereoisomer, 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HETE or 12S-HETE), made by platelets, but also the later detected "R" stereoisomer, 12(R)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (also termed 12(R)-HETE or 12R-HETE) made by other tissues through their 12R-lipoxygenase enzyme, ALOX12B. The two isomers, either directly or after being further metabolized, have been suggested to be involved in a variety of human physiological and pathological reactions. Unlike hormones which are secreted by cells, travel in the circulation to alter the behavior of distant cells, and thereby act as Endocrine signalling agents, these arachidonic acid metabolites act locally as Autocrine signalling and/or Paracrine signaling agents to regulate the behavior of their cells of origin or of nearby cells, respectively. In these roles, they may amplify or dampen, expand or contract cellular and tissue responses to disturbances.
Edelfosine is a synthetic alkyl-lysophospholipid (ALP). It has antineoplastic (anti-cancer) effects.
15-Hydroxyeicosatetraenoic acid (also termed 15-HETE, 15(S)-HETE, and 15S-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. Various cell types metabolize arachidonic acid to 15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HpETE). This initial hydroperoxide product is extremely short-lived in cells: if not otherwise metabolized, it is rapidly reduced to 15(S)-HETE. Both of these metabolites, depending on the cell type which forms them, can be further metabolized to 15-oxo-eicosatetraenoic acid (15-oxo-ETE), 5(S),15(S)-dihydroxy-eicosatetraenoic acid (5(S),15(S)-diHETE), 5-oxo-15(S)-hydroxyeicosatetraenoic acid (5-oxo-15(S)-HETE), a subset of specialized pro-resolving mediators viz., the lipoxins, a class of pro-inflammatory mediators, the eoxins, and other products that have less well-defined activities and functions. Thus, 15(S)-HETE and 15(S)-HpETE, in addition to having intrinsic biological activities, are key precursors to numerous biologically active derivatives.
13-Hydroxyoctadecadienoic acid (13-HODE) is the commonly used term for 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13(S)-HODE). The production of 13(S)-HODE is often accompanied by the production of its stereoisomer, 13(R)-hydroxy-9Z,11E-octadecadienoic acid (13(R)-HODE). The adjacent figure gives the structure for the (S) stereoisomer of 13-HODE. Two other naturally occurring 13-HODEs that may accompany the production of 13(S)-HODE are its cis-trans (i.e., 9E,11E) isomers viz., 13(S)-hydroxy-9E,11E-octadecadienoic acid (13(S)-EE-HODE) and 13(R)-hydroxy-9E,11E-octadecadienoic acid (13(R)-EE-HODE). Studies credit 13(S)-HODE with a range of clinically relevant bioactivities; recent studies have assigned activities to 13(R)-HODE that differ from those of 13(S)-HODE; and other studies have proposed that one or more of these HODEs mediate physiological and pathological responses, are markers of various human diseases, and/or contribute to the progression of certain diseases in humans. Since, however, many studies on the identification, quantification, and actions of 13(S)-HODE in cells and tissues have employed methods that did not distinguish between these isomers, 13-HODE is used here when the actual isomer studied is unclear.
9-Hydroxyoctadecadienoic acid (or 9-HODE) has been used in the literature to designate either or both of two stereoisomer metabolites of the essential fatty acid, linoleic acid: 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid (9(S)-HODE) and 9(R)-hydroxy-10(E),12(Z)-octadecadienoic acid (9(R)-HODE); these two metabolites differ in having their hydroxy residues in the S or R configurations, respectively. The accompanying figure gives the structure for 9(S)-HETE. Two other 9-hydroxy linoleic acid derivatives occur in nature, the 10E,12E isomers of 9(S)-HODE and 9(R)-HODE viz., 9(S)-hydroxy-10E,12E-octadecadienoic acid (9(S)-EE-HODE) and 9(R)-hydroxy-10E,12E-octadecadienoic acid (13(R)-EE-HODE); these two derivatives have their double bond at carbon 12 in the E or trans configuration as opposed to the Z or cis configuration. The four 9-HODE isomers, particularly under conditions of oxidative stress, may form together in cells and tissues; they have overlapping but not identical biological activities and significances. Because many studies have not distinguished between the S and R stereoisomers and, particularly in identifying tissue levels, the two EE isomers, 9-HODE is used here when the isomer studied is unclear.
5-Oxo-eicosatetraenoic acid is a nonclassic eicosanoid metabolite of arachidonic acid and the most potent naturally occurring member of the 5-HETE family of cell signaling agents. Like other cell signaling agents, 5-oxo-ETE is made by a cell and then feeds back to stimulate its parent cell and/or exits this cell to stimulate nearby cells. 5-Oxo-ETE can stimulate various cell types particularly human leukocytes but possesses its highest potency and power in stimulating the human eosinophil type of leukocyte. It is therefore suggested to be formed during and to be an important contributor to the formation and progression of eosinophil-based allergic reactions; it is also suggested that 5-oxo-ETE contributes to the development of inflammation, cancer cell growth, and other pathological and physiological events.