Dopamine receptor D3

Last updated
DRD3
3PBL (D3).png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DRD3 , D3DR, ETM1, FET1, dopamine receptor D3
External IDs OMIM: 126451 MGI: 94925 HomoloGene: 623 GeneCards: DRD3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_007877

RefSeq (protein)

NP_000787
NP_001269492
NP_001277738
NP_387512

NP_031903

Location (UCSC) Chr 3: 114.13 – 114.2 Mb Chr 16: 43.57 – 43.64 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Dopamine receptor D3 is a protein that in humans is encoded by the DRD3 gene. [5] [6]

Contents

This gene encodes the D3 subtype of the dopamine receptor. The D3 subtype inhibits adenylyl cyclase through inhibitory G-proteins. This receptor is expressed in phylogenetically older regions of the brain, suggesting that this receptor plays a role in cognitive and emotional functions.[ citation needed ] It is a target for drugs which treat schizophrenia, drug addiction, and Parkinson's disease. [7] Alternative splicing of this gene results in multiple transcript variants that would encode different isoforms, although some variants may be subject to nonsense-mediated decay (NMD). [6]

Function

Alpha-synuclein (α-Syn) aggregation via Lewy bodies inclusion, a pathogenic signature exclusively present in PD patients, is decreased by D3 agonists while DA content is elevated by inhibiting DA reuptake and breakdown. The regulation of α-Syn aggregation and clearance enhances brain-derived neurotrophic factor (BDNF) secretion, which ultimately ameliorates neuroinflammation and oxidative stress while promoting neurogenesis and interacting with other DA receptors. [8] [9]

D3 agonists like 7-OH-DPAT, pramipexole, and rotigotine, among others, display antidepressant effects in rodent models of depression. [10] [11] Apomorphine has the ability to help PD patients with their cognition awareness. [12] In addition to having antidepressant properties such as regulating the depression-like behaviors and depression development, pramipexole has the capability to prevent and slow down cell apoptosis as well as to restore damaged neural networks and connections while rotigotine help PD patients to attenuates hyperpyrexia syndrome and schizophrenia. [13] [14]

Animal studies

D3 agonists have been shown to disrupt prepulse inhibition of startle (PPI), a cross-species measure that recapitulates deficits in sensorimotor gating in neuropsychiatric disorders such as schizophrenia. [15] [16] [17] In contrast, D3-preferring antagonists have antipsychotic-like profiles in measures of PPI in rats. [18]

Ligands

Agonists

Partial agonists

Antagonists

Interactions

Dopamine receptor D3 has been shown to interact with CLIC6 [35] and EPB41L1. [36]

DRD3 Ser9Gly polymorphism(rs6280), which is a single nucleotide polymorphism (SNP) with variant base C/T is linked to variation in PD such as depression severity, impulse control disorders, behavioral addiction and aberrant decision-making. [37] [38] [39] [40]

See also

Related Research Articles

<span class="mw-page-title-main">Dopamine antagonist</span> Drug which blocks dopamine receptors

A dopamine antagonist, also known as an anti-dopaminergic and a dopamine receptor antagonist (DRA), is a type of drug which blocks dopamine receptors by receptor antagonism. Most antipsychotics are dopamine antagonists, and as such they have found use in treating schizophrenia, bipolar disorder, and stimulant psychosis. Several other dopamine antagonists are antiemetics used in the treatment of nausea and vomiting.

Dopamine receptor D<sub>4</sub> Protein-coding gene in the species Homo sapiens

The dopamine receptor D4 is a dopamine D2-like G protein-coupled receptor encoded by the DRD4 gene on chromosome 11 at 11p15.5.

<span class="mw-page-title-main">Pramipexole</span> Dopamine agonist medication

Pramipexole, sold under the brand Mirapex among others, is medication used to treat Parkinson's disease (PD) and restless legs syndrome (RLS). In Parkinson's disease it may be used alone or together with levodopa. It is taken by mouth. Pramipexole is a dopamine agonist of the non-ergoline class.

<span class="mw-page-title-main">Dopamine agonist</span> Compound that activates dopamine receptors

A dopamine agonist(DA) is a compound that activates dopamine receptors. There are two families of dopamine receptors, D1-like and D2-like. They are all G protein-coupled receptors. D1- and D5-receptors belong to the D1-like family and the D2-like family includes D2, D3 and D4 receptors. Dopamine agonists are primarily used in the treatment of Parkinson's disease, and to a lesser extent, in hyperprolactinemia and restless legs syndrome. They are also used off-label in the treatment of clinical depression. The use of dopamine agonists is associated with impulse control disorders and dopamine agonist withdrawal syndrome (DAWS).

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.

<span class="mw-page-title-main">Rotigotine</span> Chemical compound

Rotigotine, sold under the brand name Neupro among others, is a dopamine agonist of the non-ergoline class of medications indicated for the treatment of Parkinson's disease and restless legs syndrome. It is formulated as a once-daily transdermal patch which provides a slow and constant supply of the drug over the course of 24 hours.

<span class="mw-page-title-main">Piribedil</span> Chemical compound

Piribedil (trade names Pronoran, Trivastal Retard, Trastal, Trivastan, Clarium and others) is an antiparkinsonian agent and piperazine derivative which acts as a D2 and D3 receptor agonist. It also has α2-adrenergic antagonist properties.

Dopamine receptor D<sub>2</sub> Main receptor for most antipsychotic drugs

Dopamine receptor D2, also known as D2R, is a protein that, in humans, is encoded by the DRD2 gene. After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups, including those of Solomon Snyder and Philip Seeman used a radiolabeled antipsychotic drug to identify what is now known as the dopamine D2 receptor. The dopamine D2 receptor is the main receptor for most antipsychotic drugs. The structure of DRD2 in complex with the atypical antipsychotic risperidone has been determined.

<span class="mw-page-title-main">SB-277,011-A</span> Chemical compound

SB-277,011A is a drug which acts as a potent and selective dopamine D3 receptor antagonist, which is around 80-100x selective for D3 over D2, and lacks any partial agonist activity.

Adenosine A<sub>2A</sub> receptor Cell surface receptor found in humans

The adenosine A2A receptor, also known as ADORA2A, is an adenosine receptor, and also denotes the human gene encoding it.

Dopamine receptor D<sub>1</sub> Protein-coding gene in humans

Dopamine receptor D1, also known as DRD1. It is one of the two types of D1-like receptor family — receptors D1 and D5. It is a protein that in humans is encoded by the DRD1 gene.

5-HT<sub>6</sub> receptor Protein-coding gene in the species Homo sapiens

The 5HT6 receptor is a subtype of 5HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gs and mediates excitatory neurotransmission. HTR6 denotes the human gene encoding for the receptor.

<span class="mw-page-title-main">Metabotropic glutamate receptor 3</span> Mammalian protein found in humans

Metabotropic glutamate receptor 3 (mGluR3) is an inhibitory Gi/G0-coupled G-protein coupled receptor (GPCR) generally localized to presynaptic sites of neurons in classical circuits. However, in higher cortical circuits in primates, mGluR3 are localized post-synaptically, where they strengthen rather than weaken synaptic connectivity. In humans, mGluR3 is encoded by the GRM3 gene. Deficits in mGluR3 signaling have been linked to impaired cognition in humans, and to increased risk of schizophrenia, consistent with their expanding role in cortical evolution.

<span class="mw-page-title-main">AS-8112</span> Chemical compound

AS-8112 is a synthetic compound that acts as a selective antagonist at the dopamine receptor subtypes D2 and D3, and the serotonin receptor 5-HT3. It has potent antiemetic effects in animal studies and has been investigated for potential medical use.

<span class="mw-page-title-main">Roxindole</span> Dopaminergic & serotonergic drug developed for schizophrenia treatment

Roxindole (EMD-49,980) is a dopaminergic and serotonergic drug which was originally developed by Merck KGaA for the treatment of schizophrenia. In clinical trials its antipsychotic efficacy was only modest but it was unexpectedly found to produce potent and rapid antidepressant and anxiolytic effects. As a result, roxindole was further researched for the treatment of depression instead. It has also been investigated as a therapy for Parkinson's disease and prolactinoma.

<span class="mw-page-title-main">Sumanirole</span> Chemical compound

Sumanirole (PNU-95,666) is a highly selective D2 receptor full agonist, the first of its kind to be discovered. It was developed for the treatment of Parkinson's disease and restless leg syndrome. While it has never been approved for medical use it is a highly valuable tool compound for basic research to identify neurobiological mechanisms that are based on a dopamine D2-linked (vs. D1-, D3-, D4-, and D5-linked) mechanism of action.

<span class="mw-page-title-main">Sonepiprazole</span> Chemical compound

Sonepiprazole (U-101,387, PNU-101,387-G) is a drug of the phenylpiperazine class which acts as a highly selective D4 receptor antagonist. In animals, unlike D2 receptor antagonists like haloperidol, sonepiprazole does not block the behavioral effects of amphetamine or apomorphine, does not alter spontaneous locomotor activity on its own, and lacks extrapyramidal and neuroendocrine effects. However, it does reverse the prepulse inhibition deficits induced by apomorphine, and has also been shown to enhance cortical activity and inhibit stress-induced cognitive impairment. As a result, it was investigated as an antipsychotic for the treatment of schizophrenia in a placebo-controlled clinical trial, but in contrast to its comparator olanzapine no benefits were found and it was not researched further for this indication.

<span class="mw-page-title-main">BP-897</span> Chemical compound

BP-897 is a drug used in scientific research which acts as a potent selective dopamine D3 receptor partial agonist with an in vitro intrinsic activity of ~0.6 and ~70x greater affinity for D3 over D2 receptors and is suspected to have partial agonist or antagonist activity in vivo. It has mainly been used in the study of treatments for cocaine addiction. A study comparing BP-897 with the potent, antagonistic, and highly D3 selective SB-277,011-A found, "SB 277011-A (1–10 mg/kg) was able to block cue-induced reinstatement of nicotine-seeking, indicating that DRD3 selective antagonism may be an effective approach to prevent relapse for nicotine. In contrast, BP 897 did not block the cue-induced reinstatement of nicotine-seeking or nicotine-taking under the FR5 schedule."

<span class="mw-page-title-main">Cariprazine</span> Atypical antipsychotic medicine

Cariprazine, sold under the brand names Vraylar,Reagila and Symvenu among others, is an atypical antipsychotic originated by Gedeon Richter, which is used in the treatment of schizophrenia, bipolar mania, bipolar depression, and major depressive disorder. It acts primarily as a D3 and D2 receptor partial agonist, with a preference for the D3 receptor. Cariprazine is also a partial agonist at the serotonin 5-HT1A receptor and acts as an antagonist at 5-HT2B and 5-HT2A receptors, with high selectivity for the D3 receptor. It is taken by mouth.

<span class="mw-page-title-main">L-741,626</span> Chemical compound

L-741,626 is a drug which acts as a potent and selective antagonist for the dopamine receptor D2. It has good selectivity over the related D3 and D4 subtypes and other receptors. L-741,626 is used for laboratory research into brain function and has proved particularly useful for distinguishing D2 mediated responses from those produced by the closely related D3 subtype, and for studying the roles of these subtypes in the action of cocaine and amphetamines in the brain.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000151577 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022705 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Le Coniat M, Sokoloff P, Hillion J, Martres MP, Giros B, Pilon C, et al. (September 1991). "Chromosomal localization of the human D3 dopamine receptor gene". Human Genetics. 87 (5): 618–620. doi:10.1007/bf00209024. PMID   1916765. S2CID   28411786.
  6. 1 2 "Entrez Gene: DRD3 dopamine receptor D3".
  7. Joyce JN, Millan MJ (February 2007). "Dopamine D3 receptor agonists for protection and repair in Parkinson's disease". Current Opinion in Pharmacology. 7 (1): 100–105. doi:10.1016/j.coph.2006.11.004. PMID   17174156.
  8. Favier M, Carcenac C, Savasta M, Carnicella S (2022). "Dopamine D3 Receptors: A Potential Target to Treat Motivational Deficits in Parkinson's Disease". Current Topics in Behavioral Neurosciences. Vol. 60. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 109–132. doi:10.1007/7854_2022_316. ISBN   978-3-031-23057-8. PMID   35469394.
  9. Yang P, Perlmutter JS, Benzinger TL, Morris JC, Xu J (January 2020). "Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment?". Ageing Research Reviews. 57: 100994. doi:10.1016/j.arr.2019.100994. PMC   6939386 . PMID   31765822.
  10. Breuer ME, Groenink L, Oosting RS, Buerger E, Korte M, Ferger B, Olivier B (August 2009). "Antidepressant effects of pramipexole, a dopamine D3/D2 receptor agonist, and 7-OH-DPAT, a dopamine D3 receptor agonist, in olfactory bulbectomized rats". European Journal of Pharmacology. 616 (1–3): 134–140. doi:10.1016/j.ejphar.2009.06.029. PMID   19549514.
  11. Bertaina-Anglade V, La Rochelle CD, Scheller DK (October 2006). "Antidepressant properties of rotigotine in experimental models of depression". European Journal of Pharmacology. 548 (1–3): 106–114. doi:10.1016/j.ejphar.2006.07.022. PMID   16959244.
  12. Oliveira V, Videira G, Mendes A (July 2020). "Loss of Awareness after Continuous Apomorphine Infusion Withdrawal in Parkinson's Disease". The Canadian Journal of Neurological Sciences. Le Journal Canadien des Sciences Neurologiques. 47 (4): 576–577. doi: 10.1017/cjn.2020.43 . PMID   32122433. S2CID   211831700.
  13. Sun Y, Cui B, Ye L, Hu Y, Pan Y (2022). "Pramipexole Inhibits Neuronal Apoptosis in Rats with Parkinson's Disease". Journal of Healthcare Engineering. 2022: 7002630. doi: 10.1155/2022/7002630 . PMC   9020956 . PMID   35463692.
  14. Mooney E, Smith MD, Henderson EJ (August 2022). "An unwell patient with Parkinson's disease: Hyperpyrexia syndrome in a heatwave". JRSM Open. 13 (8): 20542704221086162. doi:10.1177/20542704221086162. PMC   9373140 . PMID   35965941.
  15. Weber M, Chang WL, Breier M, Ko D, Swerdlow NR (December 2008). "Heritable strain differences in sensitivity to the startle gating-disruptive effects of D2 but not D3 receptor stimulation". Behavioural Pharmacology. 19 (8): 786–795. doi:10.1097/FBP.0b013e32831c3b2b. PMC   3255557 . PMID   19020413.
  16. Chang WL, Swerdlow NR, Breier MR, Thangaraj N, Weber M (June 2010). "Parametric approaches towards understanding the effects of the preferential D3 receptor agonist pramipexole on prepulse inhibition in rats". Pharmacology, Biochemistry, and Behavior. 95 (4): 473–478. doi:10.1016/j.pbb.2010.04.001. PMC   2889248 . PMID   20385162.
  17. Chang WL, Weber M, Breier MR, Saint Marie RL, Hines SR, Swerdlow NR (February 2012). "Stereochemical and neuroanatomical selectivity of pramipexole effects on sensorimotor gating in rats". Brain Research. 1437: 69–76. doi:10.1016/j.brainres.2011.12.007. PMC   3268831 . PMID   22227455.
  18. Weber M, Chang WL, Durbin JP, Park PE, Luedtke RR, Mach RH, Swerdlow NR (August 2009). "Using prepulse inhibition to detect functional D3 receptor antagonism: effects of WC10 and WC44". Pharmacology, Biochemistry, and Behavior. 93 (2): 141–147. doi:10.1016/j.pbb.2009.04.022. PMC   2720754 . PMID   19426754.
  19. Leopoldo M, Lacivita E, Colabufo NA, Berardi F, Perrone R (February 2006). "Synthesis and binding profile of constrained analogues of N-[4-(4-arylpiperazin-1-yl)butyl]-3-methoxybenzamides, a class of potent dopamine D3 receptor ligands". The Journal of Pharmacy and Pharmacology. 58 (2): 209–218. doi: 10.1211/jpp.58.2.0008 . PMID   16451749. S2CID   42910160.
  20. Biswas S, Zhang S, Fernandez F, Ghosh B, Zhen J, Kuzhikandathil E, et al. (January 2008). "Further structure-activity relationships study of hybrid 7-{[2-(4-phenylpiperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol analogues: identification of a high-affinity D3-preferring agonist with potent in vivo activity with long duration of action". Journal of Medicinal Chemistry. 51 (1): 101–117. doi:10.1021/jm070860r. PMID   18072730.
  21. Perachon S, Schwartz JC, Sokoloff P (February 1999). "Functional potencies of new antiparkinsonian drugs at recombinant human dopamine D1, D2 and D3 receptors". European Journal of Pharmacology. 366 (2–3): 293–300. doi:10.1016/S0014-2999(98)00896-6. PMID   10082211.
  22. Chen J, Collins GT, Levant B, Woods J, Deschamps JR, Wang S (August 2011). "CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist". ACS Medicinal Chemistry Letters. 2 (8): 620–625. doi:10.1021/ml200100t. PMC   3224040 . PMID   22125662.
  23. Peglion JL, Poitevin C, Mannoury La Cour C, Dupuis D, Millan MJ (April 2009). "Modulations of the amide function of the preferential dopamine D3 agonist (R,R)-S32504: improvements of affinity and selectivity for D3 versus D2 receptors". Bioorganic & Medicinal Chemistry Letters. 19 (8): 2133–2138. doi:10.1016/j.bmcl.2009.03.015. PMID   19324548.
  24. Blagg J, Allerton CM, Batchelor DV, Baxter AD, Burring DJ, Carr CL, et al. (December 2007). "Design and synthesis of a functionally selective D3 agonist and its in vivo delivery via the intranasal route". Bioorganic & Medicinal Chemistry Letters. 17 (24): 6691–6696. doi:10.1016/j.bmcl.2007.10.059. PMID   17976986.
  25. Collins GT, Butler P, Wayman C, Ratcliffe S, Gupta P, Oberhofer G, Caine SB (June 2012). "Lack of abuse potential in a highly selective dopamine D3 agonist, PF-592,379, in drug self-administration and drug discrimination in rats". Behavioural Pharmacology. 23 (3): 280–291. doi:10.1097/FBP.0b013e3283536d21. PMC   3365486 . PMID   22470105.
  26. Cagnotto A, Parotti L, Mennini T (October 1996). "In vitro affinity of piribedil for dopamine D3 receptor subtypes, an autoradiographic study". European Journal of Pharmacology. 313 (1–2): 63–67. doi:10.1016/0014-2999(96)00503-1. PMID   8905329.
  27. Spiller K, Xi ZX, Peng XQ, Newman AH, Ashby CR, Heidbreder C, et al. (March 2008). "The selective dopamine D3 receptor antagonists SB-277011A and NGB 2904 and the putative partial D3 receptor agonist BP-897 attenuate methamphetamine-enhanced brain stimulation reward in rats". Psychopharmacology. 196 (4): 533–542. doi:10.1007/s00213-007-0986-6. PMC   3713235 . PMID   17985117.
  28. Chen J, Collins GT, Zhang J, Yang CY, Levant B, Woods J, Wang S (October 2008). "Design, synthesis, and evaluation of potent and selective ligands for the dopamine 3 (D3) receptor with a novel in vivo behavioral profile". Journal of Medicinal Chemistry. 51 (19): 5905–5908. doi:10.1021/jm800471h. PMC   2662387 . PMID   18785726.
  29. Dörfler M, Tschammer N, Hamperl K, Hübner H, Gmeiner P (November 2008). "Novel D3 selective dopaminergics incorporating enyne units as nonaromatic catechol bioisosteres: synthesis, bioactivity, and mutagenesis studies". Journal of Medicinal Chemistry. 51 (21): 6829–6838. doi:10.1021/jm800895v. PMID   18834111.
  30. 1 2 Bettinetti L, Schlotter K, Hübner H, Gmeiner P (October 2002). "Interactive SAR studies: rational discovery of super-potent and highly selective dopamine D3 receptor antagonists and partial agonists". Journal of Medicinal Chemistry. 45 (21): 4594–4597. doi:10.1021/jm025558r. PMID   12361386.
  31. {{cite journal | vauthors = Grundt P, Carlson EE, Cao J, Bennett CJ, McElveen E, Taylor M, Luedtke RR, Newman AH | display-authors = 6 | title = Novel heterocyclic trans olefin analogues of N-{4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl}arylcarboxamides as selective probes with high affinity for the dopamine D3 receptor | journal = Journal of Medicinal Chemistry | volume = 48 | issue = 3 | pages = 839–848 | date = February 2005 | pmid = 15689168 | doi = 10.1021/jm049465g }}
  32. Mason CW, Hassan HE, Kim KP, Cao J, Eddington ND, Newman AH, Voulalas PJ (June 2010). "Characterization of the transport, metabolism, and pharmacokinetics of the dopamine D3 receptor-selective fluorenyl- and 2-pyridylphenyl amides developed for treatment of psychostimulant abuse". The Journal of Pharmacology and Experimental Therapeutics. 333 (3): 854–864. doi:10.1124/jpet.109.165084. PMC   2879935 . PMID   20228156.
  33. Newman AH, Grundt P, Cyriac G, Deschamps JR, Taylor M, Kumar R, et al. (April 2009). "N-(4-(4-(2,3-dichloro- or 2-methoxyphenyl)piperazin-1-yl)butyl)heterobiarylcarboxamides with functionalized linking chains as high affinity and enantioselective D3 receptor antagonists". Journal of Medicinal Chemistry. 52 (8): 2559–2570. doi:10.1021/jm900095y. PMC   2760932 . PMID   19331412.
  34. Xi ZX, Gardner EL (2007). "Pharmacological actions of NGB 2904, a selective dopamine D3 receptor antagonist, in animal models of drug addiction". CNS Drug Reviews. 13 (2): 240–259. doi:10.1111/j.1527-3458.2007.00013.x. PMC   3771110 . PMID   17627675.
  35. Griffon N, Jeanneteau F, Prieur F, Diaz J, Sokoloff P (September 2003). "CLIC6, a member of the intracellular chloride channel family, interacts with dopamine D(2)-like receptors". Brain Research. Molecular Brain Research. 117 (1): 47–57. doi:10.1016/S0169-328X(03)00283-3. PMID   14499480.
  36. Binda AV, Kabbani N, Lin R, Levenson R (September 2002). "D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N". Molecular Pharmacology. 62 (3): 507–513. doi:10.1124/mol.62.3.507. PMID   12181426. S2CID   19901660.
  37. Krishnamoorthy S, Rajan R, Banerjee M, Kumar H, Sarma G, Krishnan S, et al. (September 2016). "Dopamine D3 receptor Ser9Gly variant is associated with impulse control disorders in Parkinson's disease patients". Parkinsonism & Related Disorders. 30: 13–17. doi:10.1016/j.parkreldis.2016.06.005. PMID   27325396.
  38. Zhi Y, Yuan Y, Si Q, Wang M, Shen Y, Wang L, et al. (2019-04-15). "The Association between DRD3 Ser9Gly Polymorphism and Depression Severity in Parkinson's Disease". Parkinson's Disease. 2019: 1642087. doi: 10.1155/2019/1642087 . PMC   6501220 . PMID   31143436.
  39. Castro-Martínez XH, García-Ruiz PJ, Martínez-García C, Martínez-Castrillo JC, Vela L, Mata M, et al. (April 2018). "Behavioral addictions in early-onset Parkinson disease are associated with DRD3 variants". Parkinsonism & Related Disorders. 49: 100–103. doi:10.1016/j.parkreldis.2018.01.010. PMID   29361389.
  40. Rajan R, Krishnan S, Sarma G, Sarma SP, Kishore A (2018). "Dopamine Receptor D3 rs6280 is Associated with Aberrant Decision-Making in Parkinson's Disease". Movement Disorders Clinical Practice. 5 (4): 413–416. doi:10.1002/mdc3.12631. PMC   6174438 . PMID   30363458.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.