GABBR1

Last updated
GABBR1
Protein GABBR1 PDB 1srz.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases GABBR1 , GABABR1, GABBR1-3, GB1, GPRC3A, dJ271M21.1.1, dJ271M21.1.2, gamma-aminobutyric acid type B receptor subunit 1
External IDs OMIM: 603540 MGI: 1860139 HomoloGene: 1132 GeneCards: GABBR1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001470
NM_021903
NM_021904
NM_021905
NM_001319053

NM_019439

RefSeq (protein)

NP_001305982
NP_001461
NP_068703
NP_068704

NP_062312

Location (UCSC) Chr 6: 29.56 – 29.63 Mb Chr 17: 37.36 – 37.39 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Gamma-aminobutyric acid B receptor, 1 (GABAB1), is a G-protein coupled receptor subunit encoded by the GABBR1 gene.

Function

GABAB1 is a receptor for Gamma-aminobutyric acid. Upon binding, GABAB1 will produce a slow and prolonged inhibitory effect. GABAB1 is one part of a heterodimer, which is the GABAB receptor, consisting of it and the related GABAB2 protein. The GABA(B) receptor 1 gene is mapped to chromosome 6p21.3 within the HLA class I region close to the HLA-F gene. Susceptibility loci for multiple sclerosis, epilepsy, and schizophrenia have also been mapped in this region. Alternative splicing of this gene generates 4 transcript variants. [5]

Interactions

GABBR1 has been shown to interact with ATF4 [6] and GABBR2. [7]

See also

Related Research Articles

<span class="mw-page-title-main">GABA receptor</span> Receptors that respond to gamma-aminobutyric acid

The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABAA and GABAB. GABAA receptors are ligand-gated ion channels ; whereas GABAB receptors are G protein-coupled receptors, also called metabotropic receptors.

GABAB receptors (GABABR) are G-protein coupled receptors for gamma-aminobutyric acid (GABA), therefore making them metabotropic receptors, that are linked via G-proteins to potassium channels. The changing potassium concentrations hyperpolarize the cell at the end of an action potential. The reversal potential of the GABAB-mediated IPSP is –100 mV, which is much more hyperpolarized than the GABAA IPSP. GABAB receptors are found in the central nervous system and the autonomic division of the peripheral nervous system.

The GABAA-rho receptor is a subclass of GABAA receptors composed entirely of rho (ρ) subunits. GABAA receptors including those of the ρ-subclass are ligand-gated ion channels responsible for mediating the effects of gamma-amino butyric acid (GABA), the major inhibitory neurotransmitter in the brain. The GABAA-ρ receptor, like other GABAA receptors, is expressed in many areas of the brain, but in contrast to other GABAA receptors, the GABAA-ρ receptor has especially high expression in the retina.

<span class="mw-page-title-main">Gamma-aminobutyric acid receptor subunit gamma-2</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit gamma-2 is a protein that in humans is encoded by the GABRG2 gene.

<span class="mw-page-title-main">Gamma-aminobutyric acid receptor subunit alpha-1</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit alpha-1 is a protein that in humans is encoded by the GABRA1 gene.

<span class="mw-page-title-main">GABRB3</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit beta-3 is a protein that in humans is encoded by the GABRB3 gene. It is located within the 15q12 region in the human genome and spans 250kb. This gene includes 10 exons within its coding region. Due to alternative splicing, the gene codes for many protein isoforms, all being subunits in the GABAA receptor, a ligand-gated ion channel. The beta-3 subunit is expressed at different levels within the cerebral cortex, hippocampus, cerebellum, thalamus, olivary body and piriform cortex of the brain at different points of development and maturity. GABRB3 deficiencies are implicated in many human neurodevelopmental disorders and syndromes such as Angelman syndrome, Prader-Willi syndrome, nonsyndromic orofacial clefts, epilepsy and autism. The effects of methaqualone and etomidate are mediated through GABBR3 positive allosteric modulation.

<span class="mw-page-title-main">GABBR2</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid (GABA) B receptor, 2 (GABAB2) is a G-protein coupled receptor subunit encoded by the GABBR2 gene in humans.

<span class="mw-page-title-main">GABRB1</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit beta-1 is a protein that in humans is encoded by the GABRB1 gene.

<span class="mw-page-title-main">GABA transporter type 1</span> Protein-coding gene in the species Homo sapiens

GABA transporter 1 (GAT1) also known as sodium- and chloride-dependent GABA transporter 1 is a protein that in humans is encoded by the SLC6A1 gene and belongs to the solute carrier 6 (SLC6) family of transporters. It mediates gamma-aminobutyric acid's translocation from the extracellular to intracellular spaces within brain tissue and the central nervous system as a whole.

<span class="mw-page-title-main">GABRR1</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit rho-1 is a protein that in humans is encoded by the GABRR1 gene.

<span class="mw-page-title-main">GABRA6</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit alpha-6 is a protein that in humans is encoded by the GABRA6 gene.

<span class="mw-page-title-main">GABRA3</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit alpha-3 is a protein that in humans is encoded by the GABRA3 gene.

<span class="mw-page-title-main">GABRA5</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid (GABA) A receptor, alpha 5, also known as GABRA5, is a protein which in humans is encoded by the GABRA5 gene.

<span class="mw-page-title-main">GABRE</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit epsilon is a protein that in humans is encoded by the GABRE gene.

<span class="mw-page-title-main">GABRA4</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit alpha-4 is a protein that in humans is encoded by the GABRA4 gene.

<span class="mw-page-title-main">GABRR2</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit rho-2 is a protein that in humans is encoded by the GABRR2 gene.

<span class="mw-page-title-main">GABRG3</span> Protein-coding gene in the species Homo sapiens

GABAA receptor-γ3, also known as GABRG3, is a protein which in humans is encoded by the GABRG3 gene.

<span class="mw-page-title-main">GABRP</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit pi is a protein that in humans is encoded by the GABRP gene.

<span class="mw-page-title-main">GABRR3</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit rho-3 is a protein that in humans is encoded by the GABRR3 gene. The protein encoded by this gene is a subunit of the GABAA-ρ receptor.

<span class="mw-page-title-main">GS-39783</span> Chemical compound

GS-39783 is a compound used in scientific research which acts as a positive allosteric modulator at the GABAB receptor. It has been shown to produce anxiolytic effects in animal studies, and reduces self-administration of alcohol, cocaine and nicotine.

References

  1. 1 2 3 ENSG00000206511, ENSG00000206466, ENSG00000232632, ENSG00000232569, ENSG00000237051, ENSG00000204681 GRCh38: Ensembl release 89: ENSG00000237112, ENSG00000206511, ENSG00000206466, ENSG00000232632, ENSG00000232569, ENSG00000237051, ENSG00000204681 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024462 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: GABBR1 gamma-aminobutyric acid (GABA) B receptor, 1".
  6. White JH, McIllhinney RA, Wise A, Ciruela F, Chan WY, Emson PC, Billinton A, Marshall FH (December 2000). "The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx". Proc. Natl. Acad. Sci. U.S.A. 97 (25): 13967–72. Bibcode:2000PNAS...9713967W. doi: 10.1073/pnas.240452197 . PMC   17684 . PMID   11087824.
  7. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (December 1998). "Heterodimerization is required for the formation of a functional GABA(B) receptor". Nature . 396 (6712): 679–82. Bibcode:1998Natur.396..679W. doi:10.1038/25354. PMID   9872316. S2CID   4406311.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.