Melatonin receptor 1B

Last updated
MTNR1B
Identifiers
Aliases MTNR1B , FGQTL2, MEL-1B-R, MT2, Melatonin receptor 1B
External IDs OMIM: 600804; MGI: 2181726; HomoloGene: 4350; GeneCards: MTNR1B; OMA:MTNR1B - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005959

NM_145712

RefSeq (protein)

NP_005950

NP_663758

Location (UCSC) Chr 11: 92.97 – 92.99 Mb Chr 9: 15.74 – 15.79 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Melatonin receptor 1B, also known as MTNR1B, is a protein that in humans is encoded by the MTNR1B gene. [5] [6]

Contents

Function

This gene encodes the MT2 protein, one of two high-affinity forms of a receptor for melatonin, the primary hormone secreted by the pineal gland. This gene product is an integral membrane protein that is a G-protein coupled, 7-transmembrane receptor. It is found primarily in the retina and brain; however, this detection requires RT-PCR. It is thought to participate in light-dependent functions in the retina and may be involved in the neurobiological effects of melatonin. [5] Besides the brain and retina this receptor is expressed on the bone forming cells where it regulates their function in depositing bone. [7]

Clinical significance

Several studies have identified MTNR1B receptor mutations that are associated with increased average blood sugar level and around a 20 percent elevated risk of developing type 2 diabetes. [8] [9] [10] MTNR1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in beta cells in islets. [9]

Ligands

The following MT2R ligands have selectivity over MT1R:

See also

Related Research Articles

<span class="mw-page-title-main">Pineal gland</span> Endocrine gland in the brain of most vertebrates

The pineal gland is a small endocrine gland in the brain of most vertebrates. It produces melatonin, a serotonin-derived hormone, which modulates sleep patterns following the diurnal cycles. The shape of the gland resembles a pine cone, which gives it its name. The pineal gland is located in the epithalamus, near the center of the brain, between the two hemispheres, tucked in a groove where the two halves of the thalamus join. It is one of the neuroendocrine secretory circumventricular organs in which capillaries are mostly permeable to solutes in the blood.

<span class="mw-page-title-main">Melatonin</span> Hormone released by the pineal gland

Melatonin, an indoleamine, is a natural compound produced by various organisms, including bacteria and eukaryotes. Its discovery in 1958 by Aaron B. Lerner and colleagues stemmed from the isolation of a substance from the pineal gland of cows that could induce skin lightening in common frogs. This compound was later identified as a hormone secreted in the brain during the night, playing a crucial role in regulating the sleep-wake cycle, also known as the circadian rhythm, in vertebrates.

<span class="mw-page-title-main">Melanopsin</span> Mammalian protein found in Homo sapiens

Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene Opn4. In the mammalian retina, there are two additional categories of opsins, both involved in the formation of visual images: rhodopsin and photopsin in the rod and cone photoreceptor cells, respectively.

<span class="mw-page-title-main">Opsin</span> Class of light-sensitive proteins

Animal opsins are G-protein-coupled receptors and a group of proteins made light-sensitive via a chromophore, typically retinal. When bound to retinal, opsins become retinylidene proteins, but are usually still called opsins regardless. Most prominently, they are found in photoreceptor cells of the retina. Five classical groups of opsins are involved in vision, mediating the conversion of a photon of light into an electrochemical signal, the first step in the visual transduction cascade. Another opsin found in the mammalian retina, melanopsin, is involved in circadian rhythms and pupillary reflex but not in vision. Humans have in total nine opsins. Beside vision and light perception, opsins may also sense temperature, sound, or chemicals.

Melatonin receptors are G protein-coupled receptors (GPCR) which bind melatonin. Three types of melatonin receptors have been cloned. The MT1 (or Mel1A or MTNR1A) and MT2 (or Mel1B or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype MT3 (or Mel1C or MTNR1C) has been identified in amphibia and birds. The receptors are crucial in the signal cascade of melatonin. In the field of chronobiology, melatonin has been found to be a key player in the synchrony of biological clocks. Melatonin secretion by the pineal gland has circadian rhythmicity regulated by the suprachiasmatic nucleus (SCN) found in the brain. The SCN functions as the timing regulator for melatonin; melatonin then follows a feedback loop to decrease SCN neuronal firing. The receptors MT1 and MT2 control this process. Melatonin receptors are found throughout the body in places such as the brain, the retina of the eye, the cardiovascular system, the liver and gallbladder, the colon, the skin, the kidneys, and many others. In 2019, X-ray crystal and cryo-EM structures of MT1 and MT2 were reported.

Aralkylamine <i>N</i>-acetyltransferase Class of enzymes

Aralkylamine N-acetyltransferase (AANAT), also known as arylalkylamine N-acetyltransferase or serotonin N-acetyltransferase (SNAT), is an enzyme that is involved in the day/night rhythmic production of melatonin, by modification of serotonin. It is in humans encoded by the ~2.5 kb AANAT gene containing four exons, located on chromosome 17q25. The gene is translated into a 23 kDa large enzyme. It is well conserved through evolution and the human form of the protein is 80 percent identical to sheep and rat AANAT. It is an acetyl-CoA-dependent enzyme of the GCN5-related family of N-acetyltransferases (GNATs). It may contribute to multifactorial genetic diseases such as altered behavior in sleep/wake cycle and research is on-going with the aim of developing drugs that regulate AANAT function.

<span class="mw-page-title-main">Glucagon-like peptide-1 receptor</span> Receptor activated by peptide hormone GLP-1

The glucagon-like peptide-1 receptor (GLP1R) is a G protein-coupled receptor (GPCR) found on beta cells of the pancreas and on neurons of the brain. It is involved in the control of blood sugar level by enhancing insulin secretion. In humans it is synthesised by the gene GLP1R, which is present on chromosome 6. It is a member of the glucagon receptor family of GPCRs. GLP1R is composed of two domains, one extracellular (ECD) that binds the C-terminal helix of GLP-1, and one transmembrane (TMD) domain that binds the N-terminal region of GLP-1. In the TMD domain there is a fulcrum of polar residues that regulates the biased signaling of the receptor while the transmembrane helical boundaries and extracellular surface are a trigger for biased agonism.

<span class="mw-page-title-main">Acetylserotonin O-methyltransferase</span> Mammalian protein found in humans

N-Acetylserotonin O-methyltransferase, also known as ASMT, is an enzyme which catalyzes the final reaction in melatonin biosynthesis: converting Normelatonin to melatonin. This reaction is embedded in the more general tryptophan metabolism pathway. The enzyme also catalyzes a second reaction in tryptophan metabolism: the conversion of 5-hydroxy-indoleacetate to 5-methoxy-indoleacetate. The other enzyme which catalyzes this reaction is n-acetylserotonin-o-methyltransferase-like-protein.

<i>N</i>-Acetylserotonin Chemical compound

N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects.

<span class="mw-page-title-main">RAR-related orphan receptor alpha</span> Protein-coding gene in the species Homo sapiens

RAR-related orphan receptor alpha (RORα), also known as NR1F1 is a nuclear receptor that in humans is encoded by the RORA gene. RORα participates in the transcriptional regulation of some genes involved in circadian rhythm. In mice, RORα is essential for development of cerebellum through direct regulation of genes expressed in Purkinje cells. It also plays an essential role in the development of type 2 innate lymphoid cells (ILC2) and mutant animals are ILC2 deficient. In addition, although present in normal numbers, the ILC3 and Th17 cells from RORα deficient mice are defective for cytokine production.

<span class="mw-page-title-main">Leptin receptor</span> Type I cytokine receptor

Leptin receptor, also known as LEP-R or OB-R, is a type I cytokine receptor, a protein that in humans is encoded by the LEPR gene. LEP-R functions as a receptor for the fat cell-specific hormone leptin. LEP-R has also been designated as CD295. Its location is the cell membrane, and it has extracellular, trans-membrane and intracellular sections.

<span class="mw-page-title-main">Melatonin receptor 1A</span> Protein-coding gene in the species Homo sapiens

Melatonin receptor type 1A is a protein that in humans is encoded by the MTNR1A gene.

<span class="mw-page-title-main">SUCNR1</span> Protein-coding gene in the species Homo sapiens

Succinate receptor 1 (SUCNR1), previously named G protein-coupled receptor 91 (GPR91), is a receptor that is activated by succinate, i.e., the anionic form of the dicarboxylic acid, succinic acid. Succinate and succinic acid readily convert into each other by gaining (succinate) or losing (succinic acid) protons, i.e., H+ (see Ions). Succinate is by far the predominant form of this interconversion in living organisms. Succinate is one of the intermediate metabolites in the citric acid cycle (also termed the TCA cycle or tricarboxylic acid cycle). This cycle is a metabolic pathway that operates in the mitochondria of virtually all eucaryotic cells. It consists of a series of biochemical reactions that serve the vital function of releasing the energy stored in nutrient carbohydrates, fats, and proteins. Recent studies have found that some of the metabolites in this cycle are able to regulate various physiological and pathological functions in a wide range of cell types. The succinyl CoA in this cycle may release its bound succinate; succinate is one of these mitochondrial-formed bioactive metabolites.

<span class="mw-page-title-main">GPR50</span> Protein-coding gene in humans

G protein-coupled receptor 50 is a protein which in humans is encoded by the GPR50 gene.

<span class="mw-page-title-main">TAS2R14</span> Protein-coding gene in the species Homo sapiens

Taste receptor type 2 member 14 is a protein that in humans is encoded by the TAS2R14 gene.

<span class="mw-page-title-main">SAG (gene)</span>

S-arrestin is a protein that in humans is encoded by the SAG gene.

Melatonin receptor 1C, also known as MTNR1C, is a protein that is encoded by the Mtnr1c gene. This receptor has been identified in fish, amphibia, and birds, but not in humans.

Steven M. Reppert is an American neuroscientist known for his contributions to the fields of chronobiology and neuroethology. His research has focused primarily on the physiological, cellular, and molecular basis of circadian rhythms in mammals and more recently on the navigational mechanisms of migratory monarch butterflies. He was the Higgins Family Professor of Neuroscience at the University of Massachusetts Medical School from 2001 to 2017, and from 2001 to 2013 was the founding chair of the Department of Neurobiology. Reppert stepped down as chair in 2014. He is currently distinguished professor emeritus of neurobiology.

<span class="mw-page-title-main">Melatonin receptor agonist</span>

Melatonin receptor agonists are analogues of melatonin that bind to and activate the melatonin receptor. Agonists of the melatonin receptor have a number of therapeutic applications including treatment of sleep disorders and depression. The discovery and development of melatonin receptor agonists was motivated by the need for more potent analogues than melatonin, with better pharmacokinetics and longer half-lives. Melatonin receptor agonists were developed with the melatonin structure as a model.

<span class="mw-page-title-main">TIK-301</span> Chemical compound

TIK-301 (LY-156735) is an agonist for the melatonin receptors MT1 and MT2 that is under development for the treatment of insomnia and other sleep disorders. Its agonist action on MT1 and MT2 receptors in the suprachiasmatic nucleus in the brain enables its action as a chronobiotic. It is in the same class of melatonin receptor agonists as ramelteon and tasimelteon.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000134640 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000050901 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: MTNR1B melatonin receptor 1B".
  6. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (Sep 1995). "Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor". Proceedings of the National Academy of Sciences of the United States of America. 92 (19): 8734–38. Bibcode:1995PNAS...92.8734R. doi: 10.1073/pnas.92.19.8734 . PMC   41041 . PMID   7568007.
  7. Sharan K, Lewis K, Furukawa T, Yadav VK (2006). "Regulation of bone mass through pineal-derived melatonin-MT2 pathway". J Pineal Res . 79A (2): 263–270. doi:10.1111/jpi.12423. PMC   5575491 . PMID   28512916.
  8. "Gene That Regulates Glucose Levels And Increases Risk For Diabetes Identified". ScienceDaily. 2008-06-28. Retrieved 2009-01-18.; "Body Clock Linked To Diabetes And High Blood Sugar In New Genome-wide Study". ScienceDaily. 2008-12-08. Retrieved 2009-01-18.; "Is There A Relationship Between Sleep-wake Rhythm And Diabetes? A New Gene Variant Influences Fasting Glucose Levels Via The Melatonin Metabolism". ScienceDaily. 2009-01-16. Retrieved 2009-01-18.
  9. 1 2 Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, et al. (Jan 2009). "Variants in MTNR1B influence fasting glucose levels". Nature Genetics. 41 (1): 77–81. doi:10.1038/ng.290. PMC   2682768 . PMID   19060907.; Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spégel P, et al. (Jan 2009). "Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion". Nature Genetics. 41 (1): 82–88. doi:10.1038/ng.288. PMC   3725650 . PMID   19060908.; Bouatia-Naji N, Bonnefond A, Cavalcanti-Proença C, Sparsø T, Holmkvist J, Marchand M, et al. (Jan 2009). "A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk". Nature Genetics. 41 (1): 89–94. doi:10.1038/ng.277. PMID   19060909. S2CID   205347673.
  10. Staiger H, Machicao F, Schäfer SA, Kirchhoff K, Kantartzis K, Guthoff M, Silbernagel G, Stefan N, Häring HU, Fritsche A (2008). Maedler K (ed.). "Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine beta-cell function". PLOS ONE. 3 (12): e3962. Bibcode:2008PLoSO...3.3962S. doi: 10.1371/journal.pone.0003962 . PMC   2597741 . PMID   19088850.
  11. Rivara S, Lodola A, Mor M, Bedini A, Spadoni G, Lucini V, Pannacci M, Fraschini F, Scaglione F, Sanchez RO, Gobbi G, Tarzia G (Dec 2007). "N-(substituted-anilinoethyl)amides: design, synthesis, and pharmacological characterization of a new class of melatonin receptor ligands". Journal of Medicinal Chemistry. 50 (26): 6618–26. doi:10.1021/jm700957j. hdl: 11576/1886829 . PMID   18052314.
  12. Bedini A, Spadoni G, Gatti G, Lucarini S, Tarzia G, Rivara S, Lorenzi S, Lodola A, Mor M, Lucini V, Pannacci M, Scaglione F (Dec 2006). "Design and synthesis of N-(3,3-diphenylpropenyl)alkanamides as a novel class of high-affinity MT2-selective melatonin receptor ligands". Journal of Medicinal Chemistry. 49 (25): 7393–403. doi:10.1021/jm060850a. PMID   17149869.
  13. Yous S, Durieux-Poissonnier S, Lipka-Belloli E, Guelzim H, Bochu C, Audinot V, Boutin JA, Delagrange P, Bennejean C, Renard P, Lesieur D (Mar 2003). "Design and synthesis of 3-phenyl tetrahydronaphthalenic derivatives as new selective MT2 melatoninergic ligands". Bioorganic & Medicinal Chemistry. 11 (5): 753–59. doi:10.1016/S0968-0896(02)00473-X. PMID   12538005.
  14. Mattson RJ, Catt JD, Keavy D, Sloan CP, Epperson J, Gao Q, Hodges DB, Iben L, Mahle CD, Ryan E, Yocca FD (Mar 2003). "Indanyl piperazines as melatonergic MT2 selective agents". Bioorganic & Medicinal Chemistry Letters. 13 (6): 1199–202. doi:10.1016/S0960-894X(03)00090-8. PMID   12643943.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.