GPR6

Last updated
GPR6
Identifiers
Aliases GPR6 , G protein-coupled receptor 6
External IDs OMIM: 600553 MGI: 2155249 HomoloGene: 38026 GeneCards: GPR6
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005284
NM_001286099

NM_199058

RefSeq (protein)

NP_001273028
NP_005275

NP_951013

Location (UCSC) Chr 6: 109.98 – 109.98 Mb Chr 10: 40.95 – 40.95 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

G protein-coupled receptor 6, also known as GPR6, is a protein which in humans is encoded by the GPR6 gene. [5] [6]

Contents

Function

GPR6 is a member of the G protein-coupled receptor family of transmembrane receptors. It has been reported that GPR6 is both constitutively active but in addition is further activated by sphingosine-1-phosphate. [7]

GPR6 up-regulates cyclic AMP levels and promotes neurite outgrowth. [8]

Ligand

Inverse Agonist

Evolution

Paralogues to GPR6 gene

Source: [10]

See also

Related Research Articles

<span class="mw-page-title-main">ACTH receptor</span> Mammalian protein found in Homo sapiens

The adrenocorticotropic hormone receptor or ACTH receptor also known as the melanocortin receptor 2 or MC2 receptor is a type of melanocortin receptor (type 2) which is specific for ACTH. A G protein–coupled receptor located on the external cell plasma membrane, it is coupled to Gαs and upregulates levels of cAMP by activating adenylyl cyclase. The ACTH receptor plays a role in immune function and glucose metabolism.

<span class="mw-page-title-main">MAS1</span> Protein-coding gene in the species Homo sapiens

MAS proto-oncogene, or MAS1 proto-oncogene, G protein-coupled receptor, is a protein that in humans is encoded by the MAS1 gene. The structure of the MAS1 product indicates that it belongs to the class of receptors that are coupled to GTP-binding proteins and share a conserved structural motif, which is described as a '7-transmembrane segment' following the prediction that these hydrophobic segments form membrane-spanning alpha-helices. The MAS1 protein may be a receptor that, when activated, modulates a critical component in a growth-regulating pathway to bring about oncogenic effects.

<span class="mw-page-title-main">NRF1</span> Protein-coding gene in the species Homo sapiens

Nuclear respiratory factor 1, also known as Nrf1, Nrf-1, NRF1 and NRF-1, encodes a protein that homodimerizes and functions as a transcription factor which activates the expression of some key metabolic genes regulating cellular growth and nuclear genes required for respiration, heme biosynthesis, and mitochondrial DNA transcription and replication. The protein has also been associated with the regulation of neurite outgrowth. Alternate transcriptional splice variants, which encode the same protein, have been characterized. Additional variants encoding different protein isoforms have been described but they have not been fully characterized. Confusion has occurred in bibliographic databases due to the shared symbol of NRF1 for this gene and for "nuclear factor -like 1" which has an official symbol of NFE2L1.

<span class="mw-page-title-main">S1PR1</span> Protein and coding gene in humans

Sphingosine-1-phosphate receptor 1, also known as endothelial differentiation gene 1 (EDG1) is a protein that in humans is encoded by the S1PR1 gene. S1PR1 is a G-protein-coupled receptor which binds the bioactive signaling molecule sphingosine 1-phosphate (S1P). S1PR1 belongs to a sphingosine-1-phosphate receptor subfamily comprising five members (S1PR1-5). S1PR1 was originally identified as an abundant transcript in endothelial cells and it has an important role in regulating endothelial cell cytoskeletal structure, migration, capillary-like network formation and vascular maturation. In addition, S1PR1 signaling is important in the regulation of lymphocyte maturation, migration and trafficking.

<span class="mw-page-title-main">LPAR1</span> Protein

Lysophosphatidic acid receptor 1 also known as LPA1 is a protein that in humans is encoded by the LPAR1 gene. LPA1 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">S1PR3</span> Protein and coding gene in humans

Sphingosine-1-phosphate receptor 3 also known as S1PR3 is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P). Hence this receptor is also known as S1P3.

<span class="mw-page-title-main">CCR4</span> Mammalian protein found in Homo sapiens

C-C chemokine receptor type 4 is a protein that in humans is encoded by the CCR4 gene. CCR4 has also recently been designated CD194.

<span class="mw-page-title-main">GPR12</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 12 is a protein that in humans is encoded by the GPR12 gene.

<span class="mw-page-title-main">NAGly receptor</span> Protein-coding gene in the species Homo sapiens

N-Arachidonyl glycine receptor, also known as G protein-coupled receptor 18 (GPR18), is a protein that in humans is encoded by the GPR18 gene. Along with the other previously "orphan" receptors GPR55 and GPR119, GPR18 has been found to be a receptor for endogenous lipid neurotransmitters, several of which also bind to cannabinoid receptors. It has been found to be involved in the regulation of intraocular pressure.

<span class="mw-page-title-main">Melanocortin 3 receptor</span> Mammalian protein found in Homo sapiens

Melanocortin 3 receptor (MC3R) is a protein that in humans is encoded by the MC3R gene.

<span class="mw-page-title-main">S1PR4</span> Protein-coding gene in the species Homo sapiens

Sphingosine-1-phosphate receptor 4 also known as S1PR4 is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P). Hence this receptor is also known as S1P4.

<span class="mw-page-title-main">LPAR2</span> Protein-coding gene in the species Homo sapiens

Lysophosphatidic acid receptor 2 also known as LPA2 is a protein that in humans is encoded by the LPAR2 gene. LPA2 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">S1PR2</span> Protein and coding gene in humans

Sphingosine-1-phosphate receptor 2, also known as S1PR2 or S1P2, is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P).

<span class="mw-page-title-main">S1PR5</span> Protein-coding gene in the species Homo sapiens

Sphingosine-1-phosphate receptor 5 also known as S1PR5 is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P). Hence this receptor is also known as S1P5.

<span class="mw-page-title-main">GPR119</span> Protein-coding gene in humans

G protein-coupled receptor 119 also known as GPR119 is a G protein-coupled receptor that in humans is encoded by the GPR119 gene.

<span class="mw-page-title-main">GPR156</span> Protein-coding gene in the species Homo sapiens

GPR156, is a human gene which encodes a G protein-coupled receptor belonging to metabotropic glutamate receptor subfamily. By sequence homology, this gene was proposed as being a possible GABAB receptor subunit, however when expressed in cells alone or with other GABAB subunits, no response to GABAB ligands could be detected. In vitro studies on GPR156 constitutive activity revealed a high level of basal activation and coupling with members of the Gi/Go heterotrimeric G protein family. In 2021, an article was reported that GPR156 modulates hair cell orientation in the cochlea. Also, it was proposed that GPR156 is related to congenital hearing loss. In 2024, molecular structures of GPR156 were characterized by using cryogenic electron microscopy.

<span class="mw-page-title-main">GPR3</span> Protein

G-protein coupled receptor 3 is a protein that in humans is encoded by the GPR3 gene. The protein encoded by this gene is a member of the G protein-coupled receptor family of transmembrane receptors and is involved in signal transduction.

<span class="mw-page-title-main">LPAR3</span> Protein-coding gene in the species Homo sapiens

Lysophosphatidic acid receptor 3 also known as LPA3 is a protein that in humans is encoded by the LPAR3 gene. LPA3 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">GPRC5B</span> Protein-coding gene in the species Homo sapiens

G-protein coupled receptor family C group 5 member B is a protein that in humans is encoded by the GPRC5B gene.

<span class="mw-page-title-main">Contactin 1</span> Protein found in humans

Contactin 1, also known as CNTN1, is a protein which in humans is encoded by the CNTN1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000146360 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000046922 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: GPR6 G protein-coupled receptor 6".
  6. Song ZH, Modi W, Bonner TI (July 1995). "Molecular cloning and chromosomal localization of human genes encoding three closely related G protein-coupled receptors". Genomics. 28 (2): 347–349. doi:10.1006/geno.1995.1154. PMID   8530049.
  7. Uhlenbrock K, Gassenhuber H, Kostenis E (November 2002). "Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors". Cellular Signalling. 14 (11): 941–953. doi:10.1016/S0898-6568(02)00041-4. PMID   12220620.
  8. Tanaka S, Ishii K, Kasai K, Yoon SO, Saeki Y (April 2007). "Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth". The Journal of Biological Chemistry. 282 (14): 10506–10515. doi: 10.1074/jbc.M700911200 . PMID   17284443.
  9. Laun AS, Shrader SH, Brown KJ, Song ZH (March 2019). "GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol". Acta Pharmacologica Sinica. 40 (3): 300–308. doi:10.1038/s41401-018-0031-9. PMC   6460361 . PMID   29941868.
  10. "GeneCards®: The Human Gene Database".

Further reading