Muscarinic acetylcholine receptor M5

Last updated
CHRM5
Identifiers
Aliases CHRM5 , HM5, cholinergic receptor muscarinic 5
External IDs OMIM: 118496 MGI: 109248 HomoloGene: 22697 GeneCards: CHRM5
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_012125
NM_001320917

NM_205783

RefSeq (protein)

NP_001307846
NP_036257

NP_991352

Location (UCSC) Chr 15: 33.97 – 34.07 Mb Chr 2: 112.31 – 112.31 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The human muscarinic acetylcholine receptor M5, encoded by the CHRM5 gene, is a member of the G protein-coupled receptor superfamily of integral membrane proteins. It is coupled to Gq protein. [5] Binding of the endogenous ligand acetylcholine to the M5 receptor triggers a number of cellular responses such as adenylate cyclase inhibition, phosphoinositide degradation, and potassium channel modulation. Muscarinic receptors mediate many of the effects of acetylcholine in the central and peripheral nervous system. The clinical implications of this receptor have not been fully explored; however, stimulation of this receptor is known to effectively decrease cyclic AMP levels and downregulate the activity of protein kinase A (PKA).

Contents

Ligands

No highly selective agonists or antagonists for the M5 receptor have been discovered as of 2018, but several non-selective muscarinic agonists and antagonists have significant affinity for M5.

The lack of selective M5 receptor ligands is one of the main reasons that the medical community has such a limited understanding of the M5 receptors effects as the possibility that any and/or all effects of non-selective ligands may be due to interactions with other receptors can not be ruled out. Some data may be obtained by observing which effects are common among semi-selective ligands (ex. a ligand of M1 and M5, a ligand of M2 and M5, and a ligand of M3 and M5), but until both a selective agonist and a selective antagonist of the M5 receptor are developed this data must be considered merely theoretical.

Agonists

Positive allosteric modulators

Negative allosteric modulators

Antagonists

See also

Related Research Articles

<span class="mw-page-title-main">Acetylcholine</span> Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic.

<span class="mw-page-title-main">Muscarine</span> Chemical compound

Muscarine, L-(+)-muscarine, or muscarin is a natural product found in certain mushrooms, particularly in Inocybe and Clitocybe species, such as the deadly C. dealbata. Mushrooms in the genera Entoloma and Mycena have also been found to contain levels of muscarine which can be dangerous if ingested. Muscarine has been found in harmless trace amounts in Boletus, Hygrocybe, Lactarius and Russula. Trace concentrations of muscarine are also found in Amanita muscaria, though the pharmacologically more relevant compound from this mushroom is the Z-drug-like alkaloid muscimol. A. muscaria fruitbodies contain a variable dose of muscarine, usually around 0.0003% fresh weight. This is very low and toxicity symptoms occur very rarely. Inocybe and Clitocybe contain muscarine concentrations up to 1.6%.

<span class="mw-page-title-main">Nicotinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of nicotine

Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral nervous system, muscle, and many other tissues of many organisms. At the neuromuscular junction they are the primary receptor in muscle for motor nerve-muscle communication that controls muscle contraction. In the peripheral nervous system: (1) they transmit outgoing signals from the presynaptic to the postsynaptic cells within the sympathetic and parasympathetic nervous system, and (2) they are the receptors found on skeletal muscle that receive acetylcholine released to signal for muscular contraction. In the immune system, nAChRs regulate inflammatory processes and signal through distinct intracellular pathways. In insects, the cholinergic system is limited to the central nervous system.

<span class="mw-page-title-main">Muscarinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of muscarine

Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers in the parasympathetic nervous system.

Functional selectivity is the ligand-dependent selectivity for certain signal transduction pathways relative to a reference ligand at the same receptor. Functional selectivity can be present when a receptor has several possible signal transduction pathways. To which degree each pathway is activated thus depends on which ligand binds to the receptor. Functional selectivity, or biased signaling, is most extensively characterized at G protein coupled receptors (GPCRs). A number of biased agonists, such as those at muscarinic M2 receptors tested as analgesics or antiproliferative drugs, or those at opioid receptors that mediate pain, show potential at various receptor families to increase beneficial properties while reducing side effects. For example, pre-clinical studies with G protein biased agonists at the μ-opioid receptor show equivalent efficacy for treating pain with reduced risk for addictive potential and respiratory depression. Studies within the chemokine receptor system also suggest that GPCR biased agonism is physiologically relevant. For example, a beta-arrestin biased agonist of the chemokine receptor CXCR3 induced greater chemotaxis of T cells relative to a G protein biased agonist.

<span class="mw-page-title-main">Muscarinic agonist</span> Activating agent of the muscarinic acetylcholine receptor

A muscarinic agonist is an agent that activates the activity of the muscarinic acetylcholine receptor. The muscarinic receptor has different subtypes, labelled M1-M5, allowing for further differentiation.

<span class="mw-page-title-main">Muscarinic antagonist</span> Drug that binds to but does not activate muscarinic cholinergic receptors

A muscarinic receptor antagonist (MRA) is a type of anticholinergic agent that blocks the activity of the muscarinic acetylcholine receptor. The muscarinic receptor is a protein involved in the transmission of signals through certain parts of the nervous system, and muscarinic receptor antagonists work to prevent this transmission from occurring. Notably, muscarinic antagonists reduce the activation of the parasympathetic nervous system. The normal function of the parasympathetic system is often summarised as "rest-and-digest", and includes slowing of the heart, an increased rate of digestion, narrowing of the airways, promotion of urination, and sexual arousal. Muscarinic antagonists counter this parasympathetic "rest-and-digest" response, and also work elsewhere in both the central and peripheral nervous systems.

A nicotinic agonist is a drug that mimics the action of acetylcholine (ACh) at nicotinic acetylcholine receptors (nAChRs). The nAChR is named for its affinity for nicotine.

Muscarinic acetylcholine receptor M<sub>1</sub> Protein-coding gene in the species Homo sapiens

The muscarinic acetylcholine receptor M1, also known as the cholinergic receptor, muscarinic 1, is a muscarinic receptor that in humans is encoded by the CHRM1 gene. It is localized to 11q13.

Muscarinic acetylcholine receptor M<sub>2</sub> Protein-coding gene in the species Homo sapiens

The muscarinic acetylcholine receptor M2, also known as the cholinergic receptor, muscarinic 2, is a muscarinic acetylcholine receptor that in humans is encoded by the CHRM2 gene. Multiple alternatively spliced transcript variants have been described for this gene. It is Gi-coupled, reducing intracellular levels of cAMP.

Muscarinic acetylcholine receptor M<sub>3</sub> Protein and coding gene in humans

The muscarinic acetylcholine receptor, also known as cholinergic/acetylcholine receptor M3, or the muscarinic 3, is a muscarinic acetylcholine receptor encoded by the human gene CHRM3.

Muscarinic acetylcholine receptor M<sub>4</sub> Protein-coding gene

The muscarinic acetylcholine receptor M4, also known as the cholinergic receptor, muscarinic 4 (CHRM4), is a protein that, in humans, is encoded by the CHRM4 gene.

Adenosine A<sub>2B</sub> receptor Cell surface receptor found in humans

The adenosine A2B receptor, also known as ADORA2B, is a G-protein coupled adenosine receptor, and also denotes the human adenosine A2b receptor gene which encodes it.

<span class="mw-page-title-main">Xanomeline</span> Chemical compound

Xanomeline is a small molecule muscarinic acetylcholine receptor agonist that was first synthesized in a collaboration between Eli Lilly and Novo Nordisk as an investigational therapeutic being studied for the treatment of central nervous system disorders.

<span class="mw-page-title-main">Vedaclidine</span> Chemical compound

Vedaclidine (INN, codenamed LY-297,802, NNC 11-1053) is an experimental analgesic drug which acts as a mixed agonist–antagonist at muscarinic acetylcholine receptors, being a potent and selective agonist for the M1 and M4 subtypes, yet an antagonist at the M2, M3 and M5 subtypes. It is orally active and an effective analgesic over 3× the potency of morphine, with side effects such as salivation and tremor only occurring at many times the effective analgesic dose. Human trials showed little potential for development of dependence or abuse, and research is continuing into possible clinical application in the treatment of neuropathic pain and cancer pain relief.

CI-1017 is a muscarinic acetylcholine receptor agonist which is selective for and is approximately equipotent at the M1 and M4 receptors, with 20-30-fold lower affinity for the M2, M3, and M5 subtypes It is the (R)-enantiomer of the racemic compound PD-142,505.

<span class="mw-page-title-main">PD-102,807</span> Chemical compound

PD-102,807 is a drug which acts as a selective antagonist for the muscarinic acetylcholine receptor M4. It is used in scientific research for studying the effects of the different muscarinic receptor subtypes in the body and brain.

<span class="mw-page-title-main">VU-0238429</span> Chemical compound

VU-0238429 is a drug which acts as a selective positive allosteric modulator for the muscarinic acetylcholine receptor M5. It was the first selective ligand developed for the M5 subtype, and is structurally derived from older M1-selective positive allosteric modulators such as VU-0119498. Replacing the O-methyl- by a phenyl group further improves the receptor subtype selectivity.

<span class="mw-page-title-main">AFDX-384</span> Chemical compound

AFDX-384 (BIBN-161) is a drug which acts as a selective antagonist of the muscarinic acetylcholine receptors, with selectivity for the M2 and M4 subtypes. It is used mainly for mapping the distribution of M2 and M4 muscarinic receptors in the brain, and studying their involvement in the development and treatment of dementia and schizophrenia.

<span class="mw-page-title-main">AC-42</span> Chemical compound

AC-42 is a selective, allosteric agonist of the M1 muscarinic acetylcholine receptor. AC-42 was the first selective M1 agonist to be discovered and its derivatives have been used to study the binding domain of the M1 receptor.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000184984 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000074939 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Qin K, Dong C, Wu G, Lambert NA (August 2011). "Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers". Nature Chemical Biology. 7 (10): 740–7. doi:10.1038/nchembio.642. PMC   3177959 . PMID   21873996.
  6. Gentry PR, Kokubo M, Bridges TM, Noetzel MJ, Cho HP, Lamsal A, et al. (September 2014). "Development of a highly potent, novel M5 positive allosteric modulator (PAM) demonstrating CNS exposure: 1-((1H-indazol-5-yl)sulfoneyl)-N-ethyl-N-(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380)". Journal of Medicinal Chemistry. 57 (18): 7804–10. doi:10.1021/jm500995y. PMC   4175000 . PMID   25147929.
  7. Gentry PR, Bridges TM, Lamsal A, Vinson PN, Smith E, Chase P, et al. (May 2013). "Discovery of ML326: The first sub-micromolar, selective M5 PAM". Bioorganic & Medicinal Chemistry Letters. 23 (10): 2996–3000. doi:10.1016/j.bmcl.2013.03.032. PMC   3634896 . PMID   23562060.
  8. Bridges TM, Marlo JE, Niswender CM, Jones CK, Jadhav SB, Gentry PR, et al. (June 2009). "Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins". Journal of Medicinal Chemistry. 52 (11): 3445–8. doi:10.1021/jm900286j. PMC   3875304 . PMID   19438238.
  9. Gentry PR, Kokubo M, Bridges TM, Kett NR, Harp JM, Cho HP, et al. (November 2013). "Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1H-imidazo[2,1-a]isoindol-5(9bH)-one (ML375)". Journal of Medicinal Chemistry. 56 (22): 9351–5. doi:10.1021/jm4013246. PMC   3876027 . PMID   24164599.
  10. McGowan KM, Nance KD, Cho HP, Bridges TM, Conn PJ, Jones CK, Lindsley CW (March 2017). "5 NAM with high CNS penetration and a desired short half-life in rat for addiction studies". Bioorganic & Medicinal Chemistry Letters. 27 (6): 1356–1359. doi:10.1016/j.bmcl.2017.02.020. PMC   5508536 . PMID   28237763.
  11. Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, et al. (August 2014). "Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe". ChemMedChem. 9 (8): 1677–82. doi:10.1002/cmdc.201402051. PMC   4116439 . PMID   24692176.
  12. Grant MK, El-Fakahany EE (October 2005). "Persistent binding and functional antagonism by xanomeline at the muscarinic M5 receptor". The Journal of Pharmacology and Experimental Therapeutics. 315 (1): 313–9. doi:10.1124/jpet.105.090134. PMID   16002459. S2CID   11016091.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.