Cysteinyl leukotriene receptor 2

Last updated
CYSLTR2
Identifiers
Aliases CYSLTR2 , CYSLT2, CYSLT2R, HG57, HPN321, KPG_011, hGPCR21, GPCR21, PSEC0146, cysteinyl leukotriene receptor 2
External IDs OMIM: 605666 MGI: 1917336 HomoloGene: 10688 GeneCards: CYSLTR2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001162412
NM_133720

RefSeq (protein)

NP_001155884
NP_598481

Location (UCSC) Chr 13: 48.65 – 48.71 Mb Chr 14: 73.26 – 73.29 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Cysteinyl leukotriene receptor 2, also termed CYSLTR2, is a receptor for cysteinyl leukotrienes (LT) (see leukotrienes#Cysteinyl leukotrienes). CYSLTR2, by binding these cysteinyl LTs (CysLTs; viz, LTC4, LTD4, and to a much lesser extent, LTE4) contributes to mediating various allergic and hypersensitivity reactions in humans. However, the first discovered receptor for these CsLTs, cysteinyl leukotriene receptor 1 (CysLTR1), appears to play the major role in mediating these reactions. [5] [6] [7]


Gene

The human CysLTR2 gene maps to the long arm of chromosome 13 at position 13q14, a chromosomal region that has long been linked to asthma and other allergic diseases. [8] The gene consists of four exons with all introns located in the genes' 5' UTR region and the entire coding region located in the last exon. 'CysLTR2 encodes a protein composed of 347 amino acids and shows only modest similarity to the CysLTR1 gene in that its protein shares only 31% amino acid identity with the CysLTR1 protein. [9] [10] [11]

Receptor

CySLTR2 mRNA is co-expressed along with CysLRR1 in human blood eosinophils and platelets, and tissue mast cells, macrophages, airway epithelial cells, and vascular endothelial cells. It is also expressed without CysLTR1 throughout the heart, including Purkinje cells, adrenal gland, and brain as well as some vascular endothelial, airway epithelial, and smooth muscle cells. [10] [11] [12] [13]

CysLTR2, similar to CysLTR1, is a G protein–coupled receptor that links to and when bound to its CysLT ligands activates the Gq alpha subunit and/or Ga subunit of its coupled G protein, depending or the cell type. Acting through these G proteins and their subunits, ligand-bound CysLTR1 activates a series of pathways that lead to cell function (see Gq alpha subunit#function and Ga subunit#function for details); the order of potency of the cysLTs in stimulating CysLTR2 is LTD4=LTC4>LTE4 with LTE4 probably lacking sufficient potency to have much activity that operates through CysLTR1 in vivo. By comparison, the stimulating potencies of these CysLTs for CysLTR1 is LTD4>LTC4>LTE4 with LTD4 showing 10-fold greater potency on CysLTR1 than CysLTR2. [10] [11] Perhaps related to this difference in CysLT sensitivities, cells co-expressing CysLTR2 and CysLTR1 may exhibit lower sensitivity to LTD4 than do cells expressing only CysLTR1; in consequence, CysLTR2 has been suggested to dampen CysLTR1's activities. [14]

In addition to CysLTR1, GPR99 (also termed the oxoglutarate receptor or, sometimes, CysLTR3) appears to be an important receptor for CysLTs, particularly for LTE4: the CystLTs show relative potencies of LTE4>LTC4>LTD4 in stimulating GPR99-bearing cells and GPR99-deficient mice exhibit a dose-dependent loss of vascular permeability responses in skin to LTE4 but not to LTC4 or LTD4. [10] [15] [16]

Other studies on model cells for allergy have defined GPR17 (also termed the uracil nucleotide/cysteinyl leukotriene receptor) as a receptor not only uracil nucleotides but also for CysLTs, with CysLTs having the following potencies LTD4>LTC4>LTE4 in stimulating GPR17-bearing cells. However, recent studies also working with model cells involved in allergy find that GPR17-bearing cells do not respond to these CysLTs (or uracil nucleotides). Rather, they find that: a) cells expressing both CysLTR1 and GPR17 receptors exhibit a marked reduction in binding and responding to LTD4 and b) mice lacking GPR17 are hyper-responsive to igE in a model for passive cutaneous anaphylaxis. The latter studies conclude that GPR17 acts to inhibit CysLTR1. [14] Finally, and in striking contrast to these studies, repeated studies on neural tissues find that Oligodendrocyte progenitor cells express GPR17 and respond through this receptor to LTC4, LTD4, and certain purines (see GPR17#Function).

CysLTR2 inhibitors

There are as yet no selective inhibitors of CysLTR2 that are in clinical use (see Clinical significance section below). However, Gemilukast (ONO-6950) reportedly inhibits both CysLTR1 and CysLTR2. The drug is currently being evaluated in phase II trials for the treatment of asthma. [17]

CysLTR2 polymorphism

Polymorphism in the CysLTR2 gene resulting in a single amino acid substitution, M201V (i.e. amino acid methionine changed for valine at the 201 position of CysLTR2 protein) has been negatively associated in Transmission disequilibrium testing with the inheritance of asthma in separate populations of: a) white and African-Americans from 359 families with a high prevalence of asthma in Denmark and Minnesota, USA, and b) 384 families with a high prevalence of asthma from the Genetics of Asthma International Network. The M201V CysLTR2 variant exhibits decreased responsiveness to LTD4 suggesting that this hypo-responsiveness underlies its asthma transmission-protecting effect. [18] [19] A -1220A>C (i.e. nucleotide adenine substituted for cytosine at position 1220 upstream from the transcription start site) gene polymorphism variant in intron III the upstream region of CysLTR2 has been associated significantly with development of asthma in a Japanese population; the impact of this polymorphism on the genes expression or product has not been determined. [9] These results suggest that CYSLTR2 contributes to the etiology and development asthma and that drugs targeting CYSLTR2 may work in a manner that differs from those of CYSLTR1 antagonists. [9]

Clinical significance

The CysLT-induced activation of CysLTR2 induces many of the same in vitro responses of cells involved in allergic reactions as well as the in vivo allergic responses in animal models as that induced by CysLT-induced CysLTR1 (see Cysteinyl leukotriene receptor 1#Receptor. [11] However, CysLT2 requires 10-fold higher concentrations of LTD4, the most potent cysLT for CysLTR1, to activate CysLTR2. Furthermore, the allergic and hypersensitivity responses of humans and animal models are significantly reduced by chronic treatment with Montelukast, Zafirlukast, and Pranlukast, drugs which are selective receptor antagonists of CysLTR1 but not CysLTR2. [20] [21] [22] [23] Models of allergic reactions in Cysltr2-deficient mice as well as in a human mast cell line indicate that mouse Cysltr2 and its human homolog CysLTR2 act to inhibit Cysltr1 and CysLTR1, respectively, and therefore suggest that CysLTR2 may similarly inhibit CysLTR1 in human allergic diseases. [24] [25] The role of CysLTR2 in the allergic and hypersensitivity diseases of humans must await the development of selective CysLTR2 inhibitors.

See also

Related Research Articles

<span class="mw-page-title-main">Eosinophil</span> Variety of white blood cells

Eosinophils, sometimes called eosinophiles or, less commonly, acidophils, are a variety of white blood cells and one of the immune system components responsible for combating multicellular parasites and certain infections in vertebrates. Along with mast cells and basophils, they also control mechanisms associated with allergy and asthma. They are granulocytes that develop during hematopoiesis in the bone marrow before migrating into blood, after which they are terminally differentiated and do not multiply. They form about 2 to 3% of white blood cells in the body.

<span class="mw-page-title-main">Allergic rhinitis</span> Nasal inflammation due to allergens in the air

Allergic rhinitis, of which the seasonal type is called hay fever, is a type of inflammation in the nose that occurs when the immune system overreacts to allergens in the air. Signs and symptoms include a runny or stuffy nose, sneezing, red, itchy, and watery eyes, and swelling around the eyes. The fluid from the nose is usually clear. Symptom onset is often within minutes following allergen exposure, and can affect sleep and the ability to work or study. Some people may develop symptoms only during specific times of the year, often as a result of pollen exposure. Many people with allergic rhinitis also have asthma, allergic conjunctivitis, or atopic dermatitis.

<span class="mw-page-title-main">Leukotriene</span> Class of inflammation mediator molecules

Leukotrienes are a family of eicosanoid inflammatory mediators produced in leukocytes by the oxidation of arachidonic acid (AA) and the essential fatty acid eicosapentaenoic acid (EPA) by the enzyme arachidonate 5-lipoxygenase.

<span class="mw-page-title-main">Lipoxin</span> Acronym for lipoxygenase interaction product

A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. They are categorized as nonclassic eicosanoids and members of the specialized pro-resolving mediators (SPMs) family of polyunsaturated fatty acid (PUFA) metabolites. Like other SPMs, LXs form during, and then act to resolve, inflammatory responses. Initially, two lipoxins were identified, lipoxin A4 (LXA4) and LXB4, but more recent studies have identified epimers of these two LXs: the epi-lipoxins, 15-epi-LXA4 and 15-epi-LXB4 respectively.

<span class="mw-page-title-main">Zafirlukast</span> Chemical compound

Zafirlukast is an orally administered leukotriene receptor antagonist (LTRA) used for the chronic treatment of asthma. While zafirlukast is generally well tolerated, headache and stomach upset often occur. Some rare side effects can occur, which can be life-threatening, such as liver failure. Churg-Strauss syndrome has been associated with zafirlukast, but the relationship isn't thought to be causative in nature. Overdoses of zafirlukast tend to be self-limiting.

<span class="mw-page-title-main">Aspirin-exacerbated respiratory disease</span> Chronic inflammatory disease affecting the sinuses and lungs

Aspirin-exacerbated respiratory disease (AERD), also called NSAID-exacerbated respiratory disease (N-ERD) or historically aspirin-induced asthma and Samter's Triad, is a chronic respiratory disease defined by the simultaneous presence of three factors: asthma, chronic rhinosinusitis with nasal polyps, and intolerance of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs). In general, the nasal polyps are more recalcitrant and the asthma more severe than that of aspirin-tolerant patients. Reduction or loss of the ability to smell is extremely common, occurring in greater than 90% of AERD patients. AERD most commonly begins in early- to mid-adulthood and has no known cure. While NSAID intolerance is a defining feature of AERD, avoidance of NSAIDs does not prevent the onset, development or perennial nature of the disease.

<span class="mw-page-title-main">Thromboxane receptor</span> Mammalian protein found in Homo sapiens

The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2.

An antileukotriene, also known as leukotriene modifier and leukotriene receptor antagonist, is a medication which functions as a leukotriene-related enzyme inhibitor or leukotriene receptor antagonist and consequently opposes the function of these inflammatory mediators; leukotrienes are produced by the immune system and serve to promote bronchoconstriction, inflammation, microvascular permeability, and mucus secretion in asthma and COPD. Leukotriene receptor antagonists are sometimes colloquially referred to as leukasts.

Leukotriene E<sub>4</sub> Chemical compound

Leukotriene E4 (LTE4) is a cysteinyl leukotriene involved in inflammation. It is known to be produced by several types of white blood cells, including eosinophils, mast cells, tissue macrophages, and basophils, and recently was also found to be produced by platelets adhering to neutrophils. It is formed from the sequential conversion of LTC4 to LTD4 and then to LTE4, which is the final and most stable cysteinyl leukotriene. Compared to the short half lives of LTC4 and LTD4, LTE4 is relatively stable and accumulates in breath condensation, in plasma, and in urine, making it the dominant cysteinyl leukotriene detected in biologic fluids. Therefore, measurements of LTE4, especially in the urine, are commonly monitored in clinical research studies.

Most of the eicosanoid receptors are integral membrane protein G protein-coupled receptors (GPCRs) that bind and respond to eicosanoid signaling molecules. Eicosanoids are rapidly metabolized to inactive products and therefore are short-lived. Accordingly, the eicosanoid-receptor interaction is typically limited to a local interaction: cells, upon stimulation, metabolize arachidonic acid to an eicosanoid which then binds cognate receptors on either its parent cell or on nearby cells to trigger functional responses within a restricted tissue area, e.g. an inflammatory response to an invading pathogen. In some cases, however, the synthesized eicosanoid travels through the blood to trigger systemic or coordinated tissue responses, e.g. prostaglandin (PG) E2 released locally travels to the hypothalamus to trigger a febrile reaction. An example of a non-GPCR receptor that binds many eicosanoids is the PPAR-γ nuclear receptor.

Leukotriene C<sub>4</sub> Chemical compound

Leukotriene C4 (LTC4) is a leukotriene. LTC4 has been extensively studied in the context of allergy and asthma. In cells of myeloid origin such as mast cells, its biosynthesis is orchestrated by translocation to the nuclear envelope along with co-localization of cytosolic phospholipase A2 (cPLA2), arachidonate 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTC4 synthase (LTC4S), which couples glutathione to an LTA4 intermediate. The MRP1 transporter then secretes cytosolic LTC4 and cell surface proteases further metabolize it by sequential cleavage of the γ-glutamyl and glycine residues off its glutathione segment, generating the more stable products LTD4 and LTE4. All three leukotrienes then bind at different affinities to two G-protein coupled receptors: CYSLTR1 and CYSLTR2, triggering pulmonary vasoconstriction and bronchoconstriction.

Arachidonate 5-lipoxygenase, also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme that in humans is encoded by the ALOX5 gene. Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (EFA) substrates into leukotrienes as well as a wide range of other biologically active products. ALOX5 is a current target for pharmaceutical intervention in a number of diseases.

<span class="mw-page-title-main">Leukotriene C4 synthase</span> Protein-coding gene in the species Homo sapiens

Leukotriene C4 synthase is an enzyme that in humans is encoded by the LTC4S gene.

<span class="mw-page-title-main">GPR17</span> Protein-coding gene in the species Homo sapiens

Uracil nucleotide/cysteinyl leukotriene receptor is a G protein-coupled receptor that in humans is encoded by the GPR17 gene located on chromosome 2 at position q21. The actual activating ligands for and some functions of this receptor are disputed.

<span class="mw-page-title-main">Cysteinyl leukotriene receptor 1</span> Protein-coding gene in humans

Cysteinyl leukotriene receptor 1, also termed CYSLTR1, is a receptor for cysteinyl leukotrienes (LT). CYSLTR1, by binding these cysteinyl LTs contributes to mediating various allergic and hypersensitivity reactions in humans as well as models of the reactions in other animals.

Prostaglandin DP<sub>2</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human protein encoded by the PTGDR2 gene and GPR44. DP2 has also been designated as CD294 (cluster of differentiation 294). It is a member of the class of prostaglandin receptors which bind with and respond to various prostaglandins. DP2 along with Prostaglandin DP1 receptor are receptors for prostaglandin D2 (PGD2). Activation of DP2 by PGD2 or other cognate receptor ligands has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.

<span class="mw-page-title-main">OXGR1</span> Protein-coding gene in the species Homo sapiens

2-Oxoglutarate receptor 1 (OXGR1), also known as cysteinyl leukotriene receptor E (CysLTE) and GPR99, is a protein that in humans is encoded by the OXGR1 gene. The Gene has recently been nominated as a receptor not only for 2-oxogluterate but also for the three cysteinyl leukotrienes (CysLTs), particularly leukotriene E4 (LTE4) and to far lesser extents LTC4 and LTE4. Recent studies implicate GPR99 as a cellular receptor which is activated by LTE4 thereby causing these cells to contribute to mediating various allergic and hypersensitivity responses.

The leukotriene (LT) receptors are G protein-coupled receptors that bind and are activated by the leukotrienes. They include the following proteins:

The cysteinyl leukotriene receptors (CysLTRs) include the following two receptors:

Cysteinyl-leukotriene type 1 receptor antagonists Class of drugs that hinder the action of leukotriene

Cysteinyl-leukotriene type 1 receptor antagonists, also known as CysLT1 antagonists, are a class of drugs that hinder the action of leukotriene by binding to the receptor with antagonistic action without having an agonistic effect. These drugs are used to treat asthma, relieve individuals of seasonal allergies rhinitis and prevention of exercise-induced bronchoconstriction. There are currently three different types of drugs within the CysLT1 family, zafirlukast which was first on the market being released in 1996, montelukast which was released in 1998 and pranlukast which was released in 2007.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000152207 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000033470 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Takasaki J, Kamohara M, Matsumoto M, Saito T, Sugimoto T, Ohishi T, Ishii H, Ota T, Nishikawa T, Kawai Y, Masuho Y, Isogai T, Suzuki Y, Sugano S, Furuichi K (August 2000). "The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT(2) receptor". Biochem Biophys Res Commun. 274 (2): 316–22. doi:10.1006/bbrc.2000.3140. PMID   10913337.
  6. Van Keer C, Kersters K, De Ley J (September 1976). "L-Sorbose metabolism in Agrobacterium tumefaciens". Antonie van Leeuwenhoek. 42 (1–2): 13–24. doi:10.1007/BF00399445. PMID   1085123. S2CID   7097419.
  7. "Entrez Gene: CYSLTR2 cysteinyl leukotriene receptor 2".
  8. Thompson MD, Takasaki J, Capra V, Rovati GE, Siminovitch KA, Burnham WM, Hudson TJ, Bossé Y, Cole DE (2006). "G-protein-coupled receptors and asthma endophenotypes: the cysteinyl leukotriene system in perspective". Molecular Diagnosis & Therapy. 10 (6): 353–66. doi:10.1007/bf03256212. PMID   17154652. S2CID   27541608.
  9. 1 2 3 Fukai H, Ogasawara Y, Migita O, Koga M, Ichikawa K, Shibasaki M, Arinami T, Noguchi E (2004). "Association between a polymorphism in cysteinyl leukotriene receptor 2 on chromosome 13q14 and atopic asthma". Pharmacogenetics. 14 (10): 683–90. doi:10.1097/00008571-200410000-00006. PMID   15454733.
  10. 1 2 3 4 Singh RK, Tandon R, Dastidar SG, Ray A (November 2013). "A review on leukotrienes and their receptors with reference to asthma". The Journal of Asthma. 50 (9): 922–31. doi:10.3109/02770903.2013.823447. PMID   23859232. S2CID   11433313.
  11. 1 2 3 4 Liu M, Yokomizo T (2015). "The role of leukotrienes in allergic diseases". Allergology International. 64 (1): 17–26. doi: 10.1016/j.alit.2014.09.001 . PMID   25572555.
  12. Zhang J, Migita O, Koga M, Shibasaki M, Arinami T, Noguchi E (June 2006). "Determination of structure and transcriptional regulation of CYSLTR1 and an association study with asthma and rhinitis". Pediatric Allergy and Immunology. 17 (4): 242–9. doi: 10.1111/j.1399-3038.2005.00347.x . PMID   16771777. S2CID   23133928.
  13. Cattaneo M (2015). "P2Y12 receptors: structure and function". Journal of Thrombosis and Haemostasis. 13 (Suppl 1): S10–6. doi:10.1111/jth.12952. PMID   26149010. S2CID   206159450.
  14. 1 2 Kanaoka Y, Boyce JA (2014). "Cysteinyl leukotrienes and their receptors; emerging concepts". Allergy, Asthma & Immunology Research. 6 (4): 288–95. doi:10.4168/aair.2014.6.4.288. PMC   4077954 . PMID   24991451.
  15. Bankova LG, Lai J, Yoshimoto E, Boyce JA, Austen KF, Kanaoka Y, Barrett NA (May 2016). "Leukotriene E4 elicits respiratory epithelial cell mucin release through the G-protein-coupled receptor, GPR99". Proceedings of the National Academy of Sciences of the United States of America. 113 (22): 6242–7. Bibcode:2016PNAS..113.6242B. doi: 10.1073/pnas.1605957113 . PMC   4896673 . PMID   27185938.
  16. Kanaoka Y, Maekawa A, Austen KF (April 2013). "Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand". The Journal of Biological Chemistry. 288 (16): 10967–72. doi: 10.1074/jbc.C113.453704 . PMC   3630866 . PMID   23504326.
  17. Itadani S, Yashiro K, Aratani Y, Sekiguchi T, Kinoshita A, Moriguchi H, Ohta N, Takahashi S, Ishida A, Tajima Y, Hisaichi K, Ima M, Ueda J, Egashira H, Sekioka T, Kadode M, Yonetomi Y, Nakao T, Inoue A, Nomura H, Kitamine T, Fujita M, Nabe T, Yamaura Y, Matsumura N, Imagawa A, Nakayama Y, Takeuchi J, Ohmoto K (2015). "Discovery of Gemilukast (ONO-6950), a Dual CysLT1 and CysLT2 Antagonist As a Therapeutic Agent for Asthma". Journal of Medicinal Chemistry. 58 (15): 6093–113. doi:10.1021/acs.jmedchem.5b00741. PMID   26200813.
  18. Brochu-Bourque A, Véronneau S, Rola-Pleszczynski M, Stankova J (2011). "Differential signaling defects associated with the M201V polymorphism in the cysteinyl leukotriene type 2 receptor". The Journal of Pharmacology and Experimental Therapeutics. 336 (2): 431–9. doi:10.1124/jpet.110.172411. PMID   20966037. S2CID   14676388.
  19. "WikiGenes - Collaborative Publishing".
  20. Haeggström JZ, Funk CD (October 2011). "Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease". Chemical Reviews. 111 (10): 5866–98. doi:10.1021/cr200246d. PMID   21936577.
  21. Anwar Y, Sabir JS, Qureshi MI, Saini KS (April 2014). "5-lipoxygenase: a promising drug target against inflammatory diseases-biochemical and pharmacological regulation". Current Drug Targets. 15 (4): 410–22. doi:10.2174/1389450114666131209110745. PMID   24313690.
  22. Kar M, Altıntoprak N, Muluk NB, Ulusoy S, Bafaqeeh SA, Cingi C (March 2016). "Antileukotrienes in adenotonsillar hypertrophy: a review of the literature". European Archives of Oto-Rhino-Laryngology. 273 (12): 4111–4117. doi:10.1007/s00405-016-3983-8. PMID   26980339. S2CID   31311115.
  23. Oussalah A, Mayorga C, Blanca M, Barbaud A, Nakonechna A, Cernadas J, Gotua M, Brockow K, Caubet JC, Bircher A, Atanaskovic M, Demoly P, K Tanno L, Terreehorst I, Laguna JJ, Romano A, Guéant JL (April 2016). "Genetic variants associated with drugs-induced immediate hypersensitivity reactions: a PRISMA-compliant systematic review". Allergy. 71 (4): 443–62. doi: 10.1111/all.12821 . PMID   26678823.
  24. Austen KF, Maekawa A, Kanaoka Y, Boyce JA (2009). "The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications". The Journal of Allergy and Clinical Immunology. 124 (3): 406–14, quiz 415–6. doi:10.1016/j.jaci.2009.05.046. PMC   2739263 . PMID   19647860.
  25. Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA (2007). "CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells". Blood. 110 (9): 3263–70. doi:10.1182/blood-2007-07-100453. PMC   2200919 . PMID   17693579.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.