Morniflumate

Last updated
Morniflumate
Morniflumate.png
Clinical data
AHFS/Drugs.com International Drug Names
ATC code
Identifiers
  • 2-morpholin-4-ylethyl 2-{[3-(trifluoromethyl)phenyl]amino}nicotinate
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
CompTox Dashboard (EPA)
ECHA InfoCard 100.207.566 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C19H20F3N3O3
Molar mass 395.382 g·mol−1
3D model (JSmol)
  • FC(F)(F)c1cc(ccc1)Nc2ncccc2C(=O)OCCN3CCOCC3
  • InChI=1S/C19H20F3N3O3/c20-19(21,22)14-3-1-4-15(13-14)24-17-16(5-2-6-23-17)18(26)28-12-9-25-7-10-27-11-8-25/h1-6,13H,7-12H2,(H,23,24) Yes check.svgY
  • Key:LDXSPUSKBDTEKA-UHFFFAOYSA-N Yes check.svgY
   (verify)

Morniflumate is a nonsteroidal anti-inflammatory drug (NSAID). [1] [2] [3]

Related Research Articles

<span class="mw-page-title-main">Aspirin</span> Medication

Aspirin, also known as acetylsalicylic acid (ASA), is a nonsteroidal anti-inflammatory drug (NSAID) used to reduce pain, fever, and/or inflammation, and as an antithrombotic. Specific inflammatory conditions which aspirin is used to treat include Kawasaki disease, pericarditis, and rheumatic fever.

<span class="mw-page-title-main">Nonsteroidal anti-inflammatory drug</span> Class of therapeutic drug for relieving pain and inflammation

Non-steroidal anti-inflammatory drugs (NSAID) are members of a therapeutic drug class which reduces pain, decreases inflammation, decreases fever, and prevents blood clots. Side effects depend on the specific drug, its dose and duration of use, but largely include an increased risk of gastrointestinal ulcers and bleeds, heart attack, and kidney disease.

<span class="mw-page-title-main">Psoriasis</span> Skin disease

Psoriasis is a long-lasting, noncontagious autoimmune disease characterized by patches of abnormal skin. These areas are red, pink, or purple, dry, itchy, and scaly. Psoriasis varies in severity from small localized patches to complete body coverage. Injury to the skin can trigger psoriatic skin changes at that spot, which is known as the Koebner phenomenon.

<span class="mw-page-title-main">Ibuprofen</span> Medication treating pain, fever, and inflammation

Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) that is used to relieve pain, fever, and inflammation. This includes painful menstrual periods, migraines, and rheumatoid arthritis. It may also be used to close a patent ductus arteriosus in a premature baby. It can be used orally or intravenously. It typically begins working within an hour.

<span class="mw-page-title-main">Butyric acid</span> Chemical compound

Butyric acid, also known under the systematic name butanoic acid, is a straight-chain alkyl carboxylic acid with the chemical formula CH3CH2CH2CO2H. It is an oily, colorless liquid with an unpleasant odor. Isobutyric acid is an isomer. Salts and esters of butyric acid are known as butyrates or butanoates. The acid does not occur widely in nature, but its esters are widespread. It is a common industrial chemical and an important component in the mammalian gut.

<span class="mw-page-title-main">Arachidonic acid</span> Fatty acid used metabolically in many organisms

Arachidonic acid is a polyunsaturated omega-6 fatty acid 20:4(ω-6), or 20:4(5,8,11,14). If its precursors or diet contains linoleic acid it is formed by biosynthesis and can be deposited in animal fats. It is a precursor in the formation of leukotrienes, prostaglandins, and thromboxanes.

<span class="mw-page-title-main">Cyclooxygenase</span> Class of enzymes

Cyclooxygenase (COX), officially known as prostaglandin-endoperoxide synthase (PTGS), is an enzyme that is responsible for biosynthesis of prostanoids, including thromboxane and prostaglandins such as prostacyclin, from arachidonic acid. A member of the animal-type heme peroxidase family, it is also known as prostaglandin G/H synthase. The specific reaction catalyzed is the conversion from arachidonic acid to prostaglandin H2 via a short-living prostaglandin G2 intermediate.

<span class="mw-page-title-main">Eicosanoid</span> Class of compounds

Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the proximity of their cells of origin. Some eicosanoids, such as prostaglandins, may also have endocrine roles as hormones to influence the function of distant cells.

<span class="mw-page-title-main">Doxycycline</span> Tetracycline-class antibiotic

Doxycycline is a broad-spectrum antibiotic of the tetracycline class used in the treatment of infections caused by bacteria and certain parasites. It is used to treat bacterial pneumonia, acne, chlamydia infections, Lyme disease, cholera, typhus, and syphilis. It is also used to prevent malaria. Doxycycline may be taken by mouth or by injection into a vein.

<span class="mw-page-title-main">Famotidine</span> Medication that reduces stomach acid

Famotidine, sold under the brand name Pepcid among others, is a histamine H2 receptor antagonist medication that decreases stomach acid production. It is used to treat peptic ulcer disease, gastroesophageal reflux disease, and Zollinger-Ellison syndrome. It is taken by mouth or by injection into a vein. It begins working within an hour.

<span class="mw-page-title-main">Noscapine</span> Chemical compound

Noscapine is a benzylisoquinoline alkaloid, of the phthalideisoquinoline structural subgroup, which has been isolated from numerous species of the family Papaveraceae. It lacks significant hypnotic, euphoric, or analgesic effects affording it with very low addictive potential. This agent is primarily used for its antitussive (cough-suppressing) effects.

<span class="mw-page-title-main">Itaconic acid</span> Chemical compound

Itaconic acid (also termed methylidenesuccinic acid and 2-methylidenebutanedioic acid) is a fatty acid containing five carbons (carbon notated as C), two of which are in carboxyl groups (notated as -CO2H) and two others which are double bonded together (i.e., C=C). (itaconic acid's chemical formula is C5H6O4, see adjacent figure and dicarboxylic acids). At the strongly acidic pH levels below 2, itaconic acid is electrically neutral because both of its carboxy residues are bound to hydrogen (notated as H); at the basic pH levels above 7, it is double negatively charged because both of its carboxy residues are not bound to H, i.e., CO2 (its chemical formula is C5H4O42-); and at acidic pH's between 2 and 7, it exists as a mixture with none, one, or both of its carboxy residues bound to hydrogen. In the cells and most fluids of living animals, which generally have pH levels above 7, itaconic acid exists almost exclusively in its double negatively charged form; this form of itaconic acid is termed itaconate. Itaconic acid and itaconate exist as cis and trans isomers (see cis–trans isomerism). Cis-itaconic acid and cis-itaconate isomers have two H's bound to one carbon and two residues (noted as R) bound to the other carbon in the double bound (i.e., H2C=CR2) whereas trans-itaconic acid and trans-itaconate have one H and one R residue bound to each carbon of the double bound. The adjacent figure shows the cis form of itaconic acid. Cis-aconitic acid spontaneously converts to its thermodynamically more stable (see chemical stability) isomer, trans-aconitic acid, at pH levels below 7. The medical literature commonly uses the terms itaconic acid and itaconate without identifying them as their cis isomers. This practice is used here, i.e., itaconic acid and itaconate refer to their cis isomers while the trans isomer of itaconate (which has been detected in fungi but not animals) is here termed trans-itaconate (trans-itaconic acid is not further mentioned here).

<span class="mw-page-title-main">Rebamipide</span> Amino acid derivative

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. It works by enhancing mucosal defense, scavenging free radicals, and temporarily activating genes encoding cyclooxygenase-2.

Arachidonate 5-lipoxygenase, also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme that in humans is encoded by the ALOX5 gene. Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (EFA) substrates into leukotrienes as well as a wide range of other biologically active products. ALOX5 is a current target for pharmaceutical intervention in a number of diseases.

<span class="mw-page-title-main">Acetylcholinesterase</span> Primary cholinesterase in the body

Acetylcholinesterase (HGNC symbol ACHE; EC 3.1.1.7; systematic name acetylcholine acetylhydrolase), also known as AChE, AChase or acetylhydrolase, is the primary cholinesterase in the body. It is an enzyme that catalyzes the breakdown of acetylcholine and some other choline esters that function as neurotransmitters:

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 2 (HCA2), also known as GPR109A and niacin receptor 1 (NIACR1), is a protein which in humans is encoded (its formation is directed) by the HCAR2 gene and in rodents by the Hcar2 gene. The human HCAR2 gene is located on the long (i.e., "q") arm of chromosome 12 at position 24.31 (notated as 12q24.31). Like the two other hydroxycarboxylic acid receptors, HCA1 and HCA3, HCA2 is a G protein-coupled receptor (GPCR) located on the surface membrane of cells. HCA2 binds and thereby is activated by D-β-hydroxybutyric acid (hereafter termed β-hydroxybutyric acid), butyric acid, and niacin (also known as nicotinic acid). β-Hydroxybutyric and butyric acids are regarded as the endogenous agents that activate HCA2. Under normal conditions, niacin's blood levels are too low to do so: it is given as a drug in high doses in order to reach levels that activate HCA2.

<span class="mw-page-title-main">Amfenac</span> Chemical compound

Amfenac, also known as 2-amino-3-benzoylbenzeneacetic acid, is a nonsteroidal anti-inflammatory drug (NSAID) with acetic acid moiety.

Palmitoylethanolamide (PEA) is an endogenous fatty acid amide, and lipid modulator.

<span class="mw-page-title-main">15-Hydroxyeicosatetraenoic acid</span> Chemical compound

15-Hydroxyeicosatetraenoic acid (also termed 15-HETE, 15(S)-HETE, and 15S-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. Various cell types metabolize arachidonic acid to 15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HpETE). This initial hydroperoxide product is extremely short-lived in cells: if not otherwise metabolized, it is rapidly reduced to 15(S)-HETE. Both of these metabolites, depending on the cell type which forms them, can be further metabolized to 15-oxo-eicosatetraenoic acid (15-oxo-ETE), 5(S),15(S)-dihydroxy-eicosatetraenoic acid (5(S),15(S)-diHETE), 5-oxo-15(S)-hydroxyeicosatetraenoic acid (5-oxo-15(S)-HETE), a subset of specialized pro-resolving mediators viz., the lipoxins, a class of pro-inflammatory mediators, the eoxins, and other products that have less well-defined activities and functions. Thus, 15(S)-HETE and 15(S)-HpETE, in addition to having intrinsic biological activities, are key precursors to numerous biologically active derivatives.

A drug class is a group of medications and other compounds that have similar chemical structures, the same mechanism of action, similar modes of action, and/or are used to treat the similar diseases. The Food and Drug Administration (FDA) has worked on classifying and licensing new medications for many years. However, the FDA's Drug Evaluation and Research Center categorizes these new medications based on both their chemical and therapeutic class.

References

  1. Melica A, Donateo L, Gerardi R, Parenti M (1991). "[A new anti-inflammatory-analgesic-antipyretic, morniflumate, in the treatment of chronic recurring bronchitis]". Rivista Europea per le Scienze Mediche e Farmacologiche = European Review for Medical and Pharmacological Sciences = Revue Européenne Pour les Sciences Médicales et Pharmacologiques. 13 (1–2): 51–60. PMID   1796197.
  2. Civelli M, Vigano T, Acerbi D, Caruso P, Giossi M, Bongrani S, Folco GC (July 1991). "Modulation of arachidonic acid metabolism by orally administered morniflumate in man". Agents and Actions. 33 (3–4): 233–9. doi:10.1007/bf01986568. PMID   1659152.
  3. Schiantarelli P, Cadel S, Acerbi D (February 1984). "A gastroprotective anti-inflammatory agent: the beta-morpholinoethyl ester of niflumic acid (morniflumate)". Agents and Actions. 14 (2): 247–56. doi:10.1007/BF01966649. PMID   6608862.