Prostacyclin synthase

Last updated
prostaglandin-I synthase
Prostacyclin synthase 2IAG Chiang et al.png
Cartoon diagram of human prostacyclin synthase. Heme group visible at center. From PDB: 2IAG
Identifiers
EC no. 5.3.99.4
CAS no. 65802-86-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
PTGIS
PDB 2iag EBI.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PTGIS , CYP8, CYP8A1, PGIS, PTGI, prostaglandin I2 (prostacyclin) synthase, prostaglandin I2 synthase
External IDs OMIM: 601699; MGI: 1097156; HomoloGene: 37374; GeneCards: PTGIS; OMA:PTGIS - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000961

NM_008968

RefSeq (protein)

NP_000952

NP_032994

Location (UCSC) Chr 20: 49.5 – 49.57 Mb n/a
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

Prostaglandin-I synthase (EC 5.3.99.4) also known as prostaglandin I2 (prostacyclin) synthase (PTGIS) or CYP8A1 is an enzyme involved in prostanoid biosynthesis that in humans is encoded by the PTGIS gene. [4] This enzyme belongs to the family of cytochrome P450 isomerases.

Contents

Function

This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. However, this protein is considered a member of the cytochrome P450 superfamily on the basis of sequence similarity rather than functional similarity. This endoplasmic reticulum membrane protein catalyzes the conversion of prostaglandin H2 to prostacyclin (prostaglandin I2), a potent vasodilator and inhibitor of platelet aggregation. An imbalance of prostacyclin and its physiological antagonist thromboxane A2 contribute to the development of myocardial infarction, stroke, and atherosclerosis. [5]

Unlike most P450 enzymes, PGIS does not require molecular oxygen (O2). Instead it uses its heme cofactor to catalyze the isomerization of prostaglandin H2 to prostacyclin. Prostaglandin H2 is produced by cyclooxygenase in the first committed step of prostaglandin biosynthesis.

Nomenclature

The systematic name of this enzyme class is (5Z,13E)-(15S)-9alpha,11alpha-epidioxy-15-hydroxyprosta-5,13-dienoate 6-isomerase. Other names in common use include prostacyclin synthase, prostacyclin synthetase, prostagladin I2 synthetase, PGI2 synthase, PGIS, PTGIS, and PGI2 synthetase.

Pathways

Thromboxane synthesis Thromboxane synthesis.png
Thromboxane synthesis
Eicosanoid synthesis. Eicosanoid synthesis.svg
Eicosanoid synthesis.

Molecular interactions

Generally, protein–protein interactions play crucial roles and are critical for formation of protein microenvironment, cell signaling and direct regulation of the activity of metabolic enzymes. Information on tissue-specific spectrum of molecular interactions of prostacyclin synthase will be useful for subnetwork analysis of PTGIS. Following proteins became known as potential direct binders of PTGIS: CYP2J2, GST, GSTA1, GLRX3, AKR1A1. Protein–protein and protein-peptide interactions were experimentally verified using surface plasmon resonance technology. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Cyclooxygenase</span> Class of enzymes

Cyclooxygenase (COX), officially known as prostaglandin-endoperoxide synthase (PTGS), is an enzyme that is responsible for biosynthesis of prostanoids, including thromboxane and prostaglandins such as prostacyclin, from arachidonic acid. A member of the animal-type heme peroxidase family, it is also known as prostaglandin G/H synthase. The specific reaction catalyzed is the conversion from arachidonic acid to prostaglandin H2 via a short-living prostaglandin G2 intermediate.

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. However, they are not omnipresent; for example, they have not been found in Escherichia coli. In mammals, these enzymes oxidize steroids, fatty acids, xenobiotics, and participate in many biosyntheses. By hydroxylation, CYP450 enzymes convert xenobiotics into hydrophilic derivatives, which are more readily excreted.

<span class="mw-page-title-main">Thromboxane-A synthase</span> Mammalian protein found in Homo sapiens

Thromboxane A synthase 1 , also known as TBXAS1, is a cytochrome P450 enzyme that, in humans, is encoded by the TBXAS1 gene.

<span class="mw-page-title-main">CYP1A2</span> Enzyme in the human body

Cytochrome P450 1A2, a member of the cytochrome P450 mixed-function oxidase system, is involved in the metabolism of xenobiotics in the human body. In humans, the CYP1A2 enzyme is encoded by the CYP1A2 gene.

<span class="mw-page-title-main">CYP2C9</span> Enzyme protein

Cytochrome P450 family 2 subfamily C member 9 is an enzyme protein. The enzyme is involved in the metabolism, by oxidation, of both xenobiotics, including drugs, and endogenous compounds, including fatty acids. In humans, the protein is encoded by the CYP2C9 gene. The gene is highly polymorphic, which affects the efficiency of the metabolism by the enzyme.

<span class="mw-page-title-main">CYP2C19</span> Mammalian protein found in humans

Cytochrome P450 2C19 is an enzyme protein. It is a member of the CYP2C subfamily of the cytochrome P450 mixed-function oxidase system. This subfamily includes enzymes that catalyze metabolism of xenobiotics, including some proton pump inhibitors and antiepileptic drugs. In humans, it is the CYP2C19 gene that encodes the CYP2C19 protein. CYP2C19 is a liver enzyme that acts on at least 10% of drugs in current clinical use, most notably the antiplatelet treatment clopidogrel (Plavix), drugs that treat pain associated with ulcers, such as omeprazole, antiseizure drugs such as mephenytoin, the antimalarial proguanil, and the anxiolytic diazepam.

<span class="mw-page-title-main">CYP1B1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 1B1 is an enzyme that in humans is encoded by the CYP1B1 gene.

<span class="mw-page-title-main">Cholesterol 7 alpha-hydroxylase</span> Protein-coding gene in the species Homo sapiens

Cholesterol 7 alpha-hydroxylase also known as cholesterol 7-alpha-monooxygenase or cytochrome P450 7A1 (CYP7A1) is an enzyme that in humans is encoded by the CYP7A1 gene which has an important role in cholesterol metabolism. It is a cytochrome P450 enzyme, which belongs to the oxidoreductase class, and converts cholesterol to 7-alpha-hydroxycholesterol, the first and rate limiting step in bile acid synthesis.

<span class="mw-page-title-main">Cyclooxygenase-2</span> Human enzyme involved in inflammation

Cyclooxygenase-2 (COX-2), also known as prostaglandin-endoperoxide synthase 2 (HUGO PTGS2), is an enzyme that in humans is encoded by the PTGS2 gene. In humans it is one of three cyclooxygenases. It is involved in the conversion of arachidonic acid to prostaglandin H2, an important precursor of prostacyclin, which is expressed in inflammation.

<span class="mw-page-title-main">CYP2J2</span> Gene of the species Homo sapiens

Cytochrome P450 2J2 (CYP2J2) is a protein that in humans is encoded by the CYP2J2 gene. CYP2J2 is a member of the cytochrome P450 superfamily of enzymes. The enzymes are oxygenases which catalyze many reactions involved in the metabolism of drugs and other xenobiotics) as well as in the synthesis of cholesterol, steroids and other lipids.

<span class="mw-page-title-main">CYP4B1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4B1 is a protein that in humans is encoded by the CYP4B1 gene.

<span class="mw-page-title-main">CYP4A11</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4A11 is a protein that in humans is codified by the CYP4A11 gene.

<span class="mw-page-title-main">CYP4F2</span> Enzyme protein in the species Homo sapiens

Cytochrome P450 4F2 is a protein that in humans is encoded by the CYP4F2 gene. This protein is an enzyme, a type of protein that catalyzes chemical reactions inside cells. This specific enzyme is part of the superfamily of cytochrome P450 (CYP) enzymes, and the encoding gene is part of a cluster of cytochrome P450 genes located on chromosome 19.

<span class="mw-page-title-main">CYP2A13</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2A13 is a protein that in humans is encoded by the CYP2A13 gene.

<span class="mw-page-title-main">CYP4F8</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4F8 is a protein that in humans is encoded by the CYP4F8 gene.

<span class="mw-page-title-main">CYP4F12</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4F12 is a protein that in humans is encoded by the CYP4F12 gene.

<span class="mw-page-title-main">CYP4F11</span> Protein-coding gene in the species Homo sapiens

CYP4F11 is a protein that in humans is encoded by the CYP4F11 gene. This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This gene is part of a cluster of cytochrome P450 genes on chromosome 19. Another member of this family, CYP4F2, is approximately 16 kb away. Alternatively spliced transcript variants encoding the same protein have been found for this gene.

<span class="mw-page-title-main">CYP4A22</span> Protein-coding gene in the species Homo sapiens

CYP4A22 also known as fatty acid omega-hydroxylase is a protein which in humans is encoded by the CYP4A22 gene.

<span class="mw-page-title-main">CYP2A7</span> Protein-coding gene in the species Homo sapiens

CYP2A7 is a protein that in humans is encoded by the CYP2A7 gene.

<span class="mw-page-title-main">20-Hydroxyeicosatetraenoic acid</span> Chemical compound

20-Hydroxyeicosatetraenoic acid, also known as 20-HETE or 20-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid, is an eicosanoid metabolite of arachidonic acid that has a wide range of effects on the vascular system including the regulation of vascular tone, blood flow to specific organs, sodium and fluid transport in the kidney, and vascular pathway remodeling. These vascular and kidney effects of 20-HETE have been shown to be responsible for regulating blood pressure and blood flow to specific organs in rodents; genetic and preclinical studies suggest that 20-HETE may similarly regulate blood pressure and contribute to the development of stroke and heart attacks. Additionally the loss of its production appears to be one cause of the human neurological disease, hereditary spastic paraplegia. Preclinical studies also suggest that the overproduction of 20-HETE may contribute to the progression of certain human cancers, particularly those of the breast.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000124212 Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. Yokoyama C, Yabuki T, Inoue H, Tone Y, Hara S, Hatae T, Nagata M, Takahashi EI, Tanabe T (September 1996). "Human gene encoding prostacyclin synthase (PTGIS): genomic organization, chromosomal localization, and promoter activity". Genomics. 36 (2): 296–304. doi:10.1006/geno.1996.0465. PMID   8812456.
  5. "Entrez Gene: PTGIS".
  6. Ershov, Pavel V.; Mezentsev, Yuri V.; Kopylov, Arthur T.; Yablokov, Evgeniy O.; Svirid, Andrey V.; Lushchyk, Aliaksandr Ya.; Kaluzhskiy, Leonid A.; Gilep, Andrei A.; Usanov, Sergey A.; Medvedev, Alexey E.; Ivanov, Alexis S. (2019-06-20). "Affinity Isolation and Mass Spectrometry Identification of Prostacyclin Synthase (PTGIS) Subinteractome". Biology. 8 (2): 49. doi: 10.3390/biology8020049 . ISSN   2079-7737. PMC   6628129 . PMID   31226805.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.