Cytochrome P450, family 15, also known as CYP15, is an animal cytochrome P450 family found in insect genome, [1] involved in juvenile hormone biosynthesis. [2] The first gene identified in this family is the DpCYP15A1 from the Diploptera punctata (Pacific beetle cockroach), encodes an epoxidase of methyl farnesoate, a precursor of juvenile hormone, alone with its ortholog TcCYP15A1 in Tribolium castaneum (red flour beetle). [3]
Cytochromes P450 (CYPs) are a superfamily of enzymes containing heme as a cofactor that functions as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.
Aromatase, also called estrogen synthetase or estrogen synthase, is an enzyme responsible for a key step in the biosynthesis of estrogens. It is CYP19A1, a member of the cytochrome P450 superfamily, which are monooxygenases that catalyze many reactions involved in steroidogenesis. In particular, aromatase is responsible for the aromatization of androgens into estrogens. The enzyme aromatase can be found in many tissues including gonads, brain, adipose tissue, placenta, blood vessels, skin, and bone, as well as in tissue of endometriosis, uterine fibroids, breast cancer, and endometrial cancer. It is an important factor in sexual development.
Cholesterol side-chain cleavage enzyme is commonly referred to as P450scc, where "scc" is an acronym for side-chain cleavage. P450scc is a mitochondrial enzyme that catalyzes conversion of cholesterol to pregnenolone. This is the first reaction in the process of steroidogenesis in all mammalian tissues that specialize in the production of various steroid hormones.
Steroid 21-hydroxylase is an enzyme that hydroxylates steroids at the C21 position and is involved in biosynthesis of aldosterone and cortisol. The enzyme converts progesterone and 17α-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively, within metabolic pathways that ultimately lead to aldosterone and cortisol. Deficiency in the enzyme may cause congenital adrenal hyperplasia.
Flour beetles are members of the darkling beetle genera Tribolium or Tenebrio. They are pests of cereal silos and are widely used as laboratory animals, as they are easy to keep. The flour beetles consume wheat and other grains, are adapted to survive in very dry environments, and can withstand even higher amounts of radiation than cockroaches. They are a major pest in the agricultural industry and are highly resistant to insecticides.
Adrenodoxin reductase, was first isolated from bovine adrenal cortex where it functions as the first enzyme in the mitochondrial P450 systems that catalyze essential steps in steroid hormone biosynthesis. Examination of complete genome sequences revealed that adrenodoxin reductase gene is present in most metazoans and prokaryotes.
The red flour beetle is a species of beetle in the family Tenebrionidae, the darkling beetles. It is a worldwide pest of stored products, particularly food grains, and a model organism for ethological and food safety research.
The halloween genes are a set of genes identified in Drosophila melanogaster that influence embryonic development. All of the genes code for cytochrome P450 enzymes in the ecdysteroidogenic pathway (biosynthesis of ecdysone from cholesterol). Ecdysteroids such as 20-hydroxyecdysone and ecdysone influence many of the morphological, physiological, biochemical changes that occur during molting in insects.
Tribolium is a genus of flour beetles in the family Tenebrionidae. They are known by various common names including flour beetles, flour weevils, red weevils and bran bugs.
CYP303A1 is an insect gene belongs to the cytochrome P450 family, first found in Drosophila melanogaster, highly expressed in pupal stage. Its ortholog also found in Locusta migratoria.
Cytochrome P450, family 16, also known as CYP16, is an animal cytochrome P450 monooxygenase family. This family was the last vertebrate CYP family recognized, and is absent from the mammal and zebrafish genome, but found in other fish and many invertebrates including some very old branches, such as Trichoplax and Oscarella carmela. Synteny mapping of CYP16 family members showing linkages to CYP26 family members, means the tetrapod's CYP26 may evolved from CYP16 of fish.
Cytochrome P450, family 9, also known as CYP9, is a cytochrome P450 family found in Insect genome, CYP9 and insect CYP6 family belong to the same clan as mammalian CYP3 and CYP5 families. The first gene identified in this family is the CYP9A1 from the Heliothis virescens, which is involved in thiodicarb insecticide resistance. Subfamily CYP9A in Lepidopteran play important roles in insecticide resistance, can metabolize esfenvalerate efficiently.
Cytochrome P450, family 18, also known as CYP18, is an animal cytochrome P450 family found in insect genomes. It is involved in insecticide resistance. The first member gene identified was CYP18A1, from a Drosophila melanogaster fly, acting as a dimethylnitrosamine demethylase.
Cytochrome P450, family 6, also known as CYP6, is a cytochrome P450 family found in Insect genome. CYP6 and CYP9, another insect CYP family, belong to the same clan as mammalian CYP3 and CYP5 families.
Cytochrome P450, family 12, also known as CYP12, is a cytochrome P450 family found in insect genome belongs to Mitochondrial clan CYPs, which is located in the inner membrane of mitochondria(IMM). The first gene identified in this family is the CYP12A1 from the Musca domestica, which is involved in insecticide resistance. CYP12A1 protein localization in mitochondria by immunohistochemistry and absolute dependence on mitochondrial electron donors adrenodoxin reductase and adrenodoxin.
Cytochrome P450, family 13, also known as CYP13, is a nematoda cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP13A1 from the Caenorhabditis elegans.
Cytochrome P450, family 14, also known as CYP14, is a nematoda cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP14A1 from the Caenorhabditis elegans. The function of most genes in this family is unknown.
Juvenile hormone acid O-methyltransferase (JHAMT) is a ~33 kDa enzyme that catalyzes the conversion of inactive precursors of Juvenile hormones (JHs) to active JHs in the final stages of JH biosynthesis in the corpora allata of insects. More specifically, the enzyme catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to the carboxylate group of JH precursors.
Cytochrome P450, family 23, also known as CYP23, is a nematoda cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP23A1 from the Caenorhabditis elegans, is a homolog of the human gene CYP7B1.
Cytochrome P450, family 25, also known as CYP25, is a nematoda cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP25A1 from the Caenorhabditis elegans.