CYP170B1

Last updated
CYP170B1
Identifiers
Organism Streptomyces albus
SymbolCYP170B1

Cytochrome P450 family 170 subfamily B member 1 (abbreviated CYP170B1) is an actinobacterial Cytochrome P450 enzyme originally from Streptomyces albus , which catalyzes the biosynthesis of the tricyclic sesquiterpene antibiotic albaflavenone. [1]

Related Research Articles

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

<span class="mw-page-title-main">CYP3A4</span> Enzyme which breaks down foreign organic molecules

Cytochrome P450 3A4 is an important enzyme in the body, mainly found in the liver and in the intestine. It oxidizes small foreign organic molecules (xenobiotics), such as toxins or drugs, so that they can be removed from the body. It is highly homologous to CYP3A5, another important CYP3A enzyme.

<span class="mw-page-title-main">CYP2D6</span> Human liver enzyme

Cytochrome P450 2D6 (CYP2D6) is an enzyme that in humans is encoded by the CYP2D6 gene. CYP2D6 is primarily expressed in the liver. It is also highly expressed in areas of the central nervous system, including the substantia nigra.

<span class="mw-page-title-main">CYP17A1</span> Mammalian protein found in Homo sapiens

Cytochrome P450 17A1 is an enzyme of the hydroxylase type that in humans is encoded by the CYP17A1 gene on chromosome 10. It is ubiquitously expressed in many tissues and cell types, including the zona reticularis and zona fasciculata of the adrenal cortex as well as gonadal tissues. It has both 17α-hydroxylase and 17,20-lyase activities, and is a key enzyme in the steroidogenic pathway that produces progestins, mineralocorticoids, glucocorticoids, androgens, and estrogens. More specifically, the enzyme acts upon pregnenolone and progesterone to add a hydroxyl (-OH) group at carbon 17 position (C17) of the steroid D ring, or acts upon 17α-hydroxyprogesterone and 17α-hydroxypregnenolone to split the side-chain off the steroid nucleus.

<span class="mw-page-title-main">21-Hydroxylase</span> Human enzyme that hydroxylates steroids

Steroid 21-hydroxylase is a protein that in humans is encoded by the CYP21A2 gene. The protein is an enzyme that hydroxylates steroids at the C21 position on the molecule. Naming conventions for enzymes are based on the substrate acted upon and the chemical process performed. Biochemically, this enzyme is involved in the biosynthesis of the adrenal gland hormones aldosterone and cortisol, which are important in blood pressure regulation, sodium homeostasis and blood sugar control. The enzyme converts progesterone and 17α-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively, within metabolic pathways which in humans ultimately lead to aldosterone and cortisol creation—deficiency in the enzyme may cause congenital adrenal hyperplasia.

<span class="mw-page-title-main">Lanosterol 14 alpha-demethylase</span> Protein-coding gene in the species Homo sapiens

Lanosterol 14α-demethylase (CYP51A1) is the animal version of a cytochrome P450 enzyme that is involved in the conversion of lanosterol to 4,4-dimethylcholesta-8(9),14,24-trien-3β-ol. The cytochrome P450 isoenzymes are a conserved group of proteins that serve as key players in the metabolism of organic substances and the biosynthesis of important steroids, lipids, and vitamins in eukaryotes. As a member of this family, lanosterol 14α-demethylase is responsible for an essential step in the biosynthesis of sterols. In particular, this protein catalyzes the removal of the C-14α-methyl group from lanosterol. This demethylation step is regarded as the initial checkpoint in the transformation of lanosterol to other sterols that are widely used within the cell.

<span class="mw-page-title-main">CYP4B1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4B1 is a protein that in humans is encoded by the CYP4B1 gene.

<span class="mw-page-title-main">CYP26A1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 26A1 is a protein that in humans is encoded by the CYP26A1 gene.

<span class="mw-page-title-main">CYP2A13</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2A13 is a protein that in humans is encoded by the CYP2A13 gene.

<span class="mw-page-title-main">CYP4F3</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4F3, also leukotriene-B(4) omega-hydroxylase 2, is an enzyme that in humans is encoded by the CYP4F3 gene. CYP4F3 encodes two distinct enzymes, CYP4F3A and CYP4F3B, which originate from the alternative splicing of a single pre-mRNA precursor molecule; selection of either isoform is tissue-specific with CYP3F3A being expressed mostly in leukocytes and CYP4F3B mostly in the liver.

<span class="mw-page-title-main">CYP20A1</span> Protein-coding gene in the species Homo sapiens

CYP20A1 is a protein which in humans is encoded by the CYP20A1 gene.

<span class="mw-page-title-main">CYP2A7</span> Protein-coding gene in the species Homo sapiens

CYP2A7 is a protein that in humans is encoded by the CYP2A7 gene.

<span class="mw-page-title-main">Cytochrome P450 aromatic O-demethylase</span>

Cytochrome P450 aromatic O-demethylase is a bacterial enzyme that catalyzes the demethylation of lignin and various lignols. The net reaction follows the following stoichiometry, illustrated with a generic methoxy arene:

Cytochrome P450 family 119 subfamily A member 1 is an Archaeal Cytochrome P450 enzyme originally from the thermophillic archea Sulfolobus solfataricus. Because this enzyme usually has the maximum activity at high temperature and low activity at room temperature, it is often used in the study of enzyme catalytic mechanism.

Cytochrome P450, family 710, also known as CYP710, is a plant cytochrome P450 monooxygenase family, the proteins encoded by its family members are mainly sterol 22-desaturase, which was widely distributed in plants, and take participate in Phytosteroidogenesis. CYP710 family is considered to be the plant orthologous of fungi CYP61 family, which is lost in animal. The CYP61/CYP710 ancestor gene diverged from a gene duplication of ancestor CYP51 in early eukaryotes

Cytochrome P450, family 105, also known as CYP105, is a cytochrome P450 monooxygenase family in bacteria, predominantly found in the phylum Actinomycetota and the order Actinomycetales. The first three genes and subfamilies identified in this family is the herbicide-inducible P-450SU1 and P-450SU2 from Streptomyces griseolus and choP from Streptomyces sp's cholesterol oxidase promoter region.

Cytochrome P450, family 11, also known as CYP11, is a chordate cytochrome P450 monooxygenase family. This family contains many enzymes involved in steroidogenesis, such as Cholesterol side-chain cleavage enzyme (CYP11A1), Steroid 11β-hydroxylase (CYP11B1) and Aldosterone synthase (CYP11B2). CYP11 can be divided into A to E five subfamilies, and CYP11A are the ohonologues to CYP11C, which duplicated during 2R event, and the tetrapod's CYP11B evolved from CYP11C of its fish ancestors, CYP11D and F found in amphioxus. These are not the typical CYP subfamilies, which share at least 40% amino acid identity, members between CYP11A and B subfamily are only 37.5-38.8% identical, and the CYP11D and E genes seen in modern lancelet is 39% identical to catfish CYP11A1.

Cytochrome P450, family 16, also known as CYP16, is an animal cytochrome P450 monooxygenase family. This family was the last vertebrate CYP family recognized, and is absent from the mammal and zebrafish genome, but found in other fish and many invertebrates including some very old branches, such as Trichoplax and Oscarella carmela. Synteny mapping of CYP16 family members showing linkages to CYP26 family members, means the tetrapod's CYP26 may evolved from CYP16 of fish.

Cytochrome P450, family 9, also known as CYP9, is a cytochrome P450 family found in Insect genome, CYP9 and insect CYP6 family belong to the same clan as mammalian CYP3 and CYP5 families. The first gene identified in this family is the CYP9A1 from the Heliothis virescens, which is involved in thiodicarb insecticide resistance. Subfamily CYP9A in Lepidopteran play important roles in insecticide resistance, can metabolize esfenvalerate efficiently.

Cytochrome P450, family 26, also known as CYP26, is an mammal cytochrome P450 monooxygenase family found in human genome. There are three members in the human genome, CYP26A1, CYP26B1 and CYP26C1. Synteny mapping of CYP26 family members showing linkages to CYP16 family members of many invertebrates, means the tetrapod's CYP26 may evolved from CYP16 of fish.

References

  1. Moody SC, Zhao B, Lei L, Nelson DR, Mullins JG, Waterman MR, Kelly SL, Lamb DC (May 2012). "Investigating conservation of the albaflavenone biosynthetic pathway and CYP170 bifunctionality in streptomycetes". The FEBS Journal. 279 (9): 1640–9. doi:10.1111/j.1742-4658.2011.08447.x. PMID   22151149. S2CID   12805486.