Pentalenolactone synthase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.14.19.8 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
Pentalenolactone synthase (EC 1.14.19.8, Formerly EC 1.3.7.10, penM (gene), pntM (gene)) is an enzyme with systematic name pentalenolactone-F:oxidized-ferredoxin oxidoreductase (pentalenolactone forming). [1] This enzyme catalyse the following chemical reaction
This is heme-thiolate protein (P-450), which is isolated from the bacteria Streptomyces exfoliatus and Streptomyces arenae .
In enzymology, a phytochromobilin:ferredoxin oxidoreductase is an enzyme that catalyzes the chemical reaction
In enzymology, a 2-oxobutyrate synthase (EC 1.2.7.2) is an enzyme that catalyzes the chemical reaction
In enzymology, a 2-oxoglutarate synthase (EC 1.2.7.3) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3-methyl-2-oxobutanoate dehydrogenase (ferredoxin) (EC 1.2.7.7) is an enzyme that catalyzes the chemical reaction
In enzymology, a carbon-monoxide dehydrogenase (ferredoxin) (EC 1.2.7.4) is an enzyme that catalyzes the chemical reaction
In enzymology, an indolepyruvate ferredoxin oxidoreductase (EC 1.2.7.8) is an enzyme that catalyzes the chemical reaction
In enzymology, a pyruvate synthase is an enzyme that catalyzes the interconversion of pyruvate and acetyl-CoA. It is also called pyruvate:ferredoxin oxidoreductase (PFOR).
In enzymology, a ferredoxin—nitrite reductase (EC 1.7.7.1) is an enzyme that catalyzes the chemical reaction
In enzymology, a glutamate synthase (ferredoxin) (EC 1.4.7.1) is an enzyme that catalyzes the chemical reaction
In enzymology, a glutamate synthase (NADPH) (EC 1.4.1.13) is an enzyme that catalyzes the chemical reaction
1-deoxy-11beta-hydroxypentalenate dehydrogenase (EC 1.1.1.340, 1-deoxy-11beta-hydroxypentalenic acid dehydrogenase, ptlF (gene), penF (gene name)) is an enzyme with systematic name 1-deoxy-11beta-hydroxypentalenate:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction
Phycoerythrobilin synthase is an enzyme with systematic name (3Z)-phycoerythrobilin:ferredoxin oxidoreductase . This enzyme catalyses the following chemical reaction
1-deoxypentalenic acid 11beta-hydroxylase (EC 1.14.11.35, PTLH (gene), SAV2991 (gene), PNTH (gene)) is an enzyme with systematic name 1-deoxypentalenic acid,2-oxoglutarate:oxygen oxidoreductase. This enzyme catalyses the following chemical reaction
Pentalenolactone F synthase (EC 1.14.11.36, PEND (gene), PNTD (gene), PTLD (gene)) is an enzyme with systematic name pentalenolactone-D,2-oxoglutarate:oxygen oxidoreductase. This enzyme catalyses the following chemical reaction
Pentalenolactone D synthase (EC 1.14.13.170, penE (gene), pntE (gene)) is an enzyme with systematic name 1-deoxy-11-oxopentalenate,NADH:oxygen oxidoreductase (pentalenolactone-D forming). This enzyme catalyses the following chemical reaction
Neopentalenolactone D synthase (EC 1.14.13.171, ptlE (gene)) is an enzyme with systematic name 1-deoxy-11-oxopentalenate,NADH:oxygen oxidoreductase (neopentalenolactone-D forming). This enzyme catalyses the following chemical reaction
Pentalenic acid synthase (EC 1.14.15.11, CYP105D7, sav7469 (gene)) is an enzyme with systematic name 1-deoxypentalenate,reduced ferredoxin:O2 oxidoreductase. This enzyme catalyses the following chemical reaction
7-Hydroxymethyl chlorophyll a reductase (EC 1.17.7.2, HCAR) is an enzyme with systematic name 71-hydroxychlorophyll a:ferredoxin oxidoreductase. This enzyme catalyses the following chemical reaction
Geranyl diphosphate 2-C-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:geranyl-diphosphate 2-C-methyltransferase. This enzyme catalyses the following chemical reaction
Chlorophyllide a and Chlorophyllide b are the biosynthetic precursors of chlorophyll a and chlorophyll b respectively. Their propionic acid groups are converted to phytyl esters by the enzyme chlorophyll synthase in the final step of the pathway. Thus the main interest in these chemical compounds has been in the study of chlorophyll biosynthesis in plants, algae and cyanobacteria. Chlorophyllide a is also an intermediate in the biosynthesis of bacteriochlorophylls.