Phenylalanine N-monooxygenase

Last updated
Phenylalanine N-monooxygenase
Identifiers
EC no. 1.14.14.40
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Phenylalanine N-monooxygenase (EC 1.14.14.40, phenylalanine N-hydroxylase, CYP79A2) is an enzyme with systematic name L-phenylalanine,NADPH:oxygen oxidoreductase (N-hydroxylating). [1] This enzyme catalyses the following chemical reaction

L-phenylalanine + 2 O2 + 2 NADPH + 2 H+ (E)-phenylacetaldoxime + 2 NADP+ + CO2 + 3 H2O (overall reaction)
(1a) L-phenylalanine + O2 + NADPH + H+ N-hydroxy-L-phenylalanine + NADP+ + H2O:
(1b) N-hydroxy-L-phenylalanine + O2 + NADPH + H+ N,N-dihydroxy-L-phenylalanine + NADP+ + H2O
(1c) N,N-dihydroxy-L-phenylalanine (E)-phenylacetaldoxime + CO2 + H2O

Phenylalanine N-monooxygenase is a heme-thiolate protein (P-450). It is part of the pathway in plants which converts phenylalanine to the glucosinolate, glucotropaeolin, which contributes to the characteristic flavor of brassicas. [2]

Related Research Articles

In enzymology, a 4-aminobenzoate 1-monooxygenase (EC 1.14.13.27) is an enzyme that catalyzes the chemical reaction

In enzymology, a (+)-abscisic acid 8'-hydroxylase (EC 1.14.13.93) is an enzyme that catalyzes the chemical reaction

In enzymology, a leukotriene-E4 20-monooxygenase (EC 1.14.13.34) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">L-lysine 6-monooxygenase (NADPH)</span> Class of enzymes

In enzymology, a L-lysine 6-monooxygenase (NADPH) (EC 1.14.13.59) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-methylcoclaurine 3'-monooxygenase (EC 1.14.13.71) is an enzyme that catalyzes the chemical reaction

In enzymology, a senecionine N-oxygenase (EC 1.14.13.101) is an enzyme that catalyzes the chemical reaction

In enzymology, a trans-cinnamate 2-monooxygenase (EC 1.14.13.14) is an enzyme that catalyzes the chemical reaction

In enzymology, a trans-cinnamate 4-monooxygenase (EC 1.14.14.91) is an enzyme that catalyzes the chemical reaction

Tyrosine N-monooxygenase (EC 1.14.13.41, tyrosine N-hydroxylase, CYP79A1) is an enzyme with systematic name L-tyrosine,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Ketosteroid monooxygenase (EC 1.14.13.54, steroid-ketone monooxygenase, progesterone, NADPH2:oxygen oxidoreductase (20-hydroxylating, ester-producing), 17alpha-hydroxyprogesterone, NADPH2:oxygen oxidoreductase (20-hydroxylating, side-chain cleaving), androstenedione, NADPH2:oxygen oxidoreductase (17-hydroxylating, lactonizing)) is an enzyme with systematic name ketosteroid,NADPH:oxygen oxidoreductase (20-hydroxylating, ester-producing/20-hydroxylating, side-chain cleaving/17-hydroxylating, lactonizing). This enzyme catalyses the following chemical reaction

Monocyclic monoterpene ketone monooxygenase (EC 1.14.13.105, 1-hydroxy-2-oxolimonene 1,2-monooxygenase, dihydrocarvone 1,2-monooxygenase, MMKMO) is an enzyme with systematic name (-)-menthone,NADPH:oxygen oxidoreductase. This enzyme catalyses the following chemical reaction

Epi-isozizaene 5-monooxygenase (EC 1.14.13.106, CYP170A1) is an enzyme with systematic name (+)-epi-isozizaene,NADPH:oxygen oxidoreductase (5-hydroxylating). This enzyme catalyses the following chemical reaction

Abieta-7,13-dien-18-ol hydroxylase (EC 1.14.13.109, CYP720B1, PTAO) is an enzyme with systematic name abieta-7,13-dien-18-ol,NADPH:oxygen oxidoreductase (18-hydroxylating). This enzyme catalyses the following chemical reaction

3-Epi-6-deoxocathasterone 23-monooxygenase (EC 1.14.13.112, cytochrome P450 90C1, CYP90D1, CYP90C1) is an enzyme with systematic name 3-epi-6-deoxocathasterone,NADPH:oxygen oxidoreductase (C-23-hydroxylating). This enzyme catalyses the following chemical reaction

Isoleucine N-monooxygenase (EC 1.14.13.117, CYP79D3, CYP79D4) is an enzyme with systematic name L-isoleucine,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Valine N-monooxygenase (EC 1.14.13.118, CYP79D1, CYP79D2) is an enzyme with systematic name L-valine,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Tryptophan N-monooxygenase (EC 1.14.13.125, tryptophan N-hydroxylase, CYP79B1, CYP79B2, CYP79B3) is an enzyme with systematic name L-tryptophan,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Beta-amyrin 11-oxidase (EC 1.14.13.134, CYP88D6) is an enzyme with systematic name beta-amyrin,NADPH:oxygen oxidoreductase (hydroxylating). This enzyme catalyses the following chemical reaction

2-Hydroxy-1,4-benzoxazin-3-one monooxygenase (EC 1.14.13.140, BX5 (gene), CYP71C3 (gene)) is an enzyme with systematic name 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one,NAD(P)H:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Amorpha-4,11-diene 12-monooxygenase (EC 1.14.13.158, CYP71AV1) is an enzyme with systematic name amorpha-4,11-diene,NADPH:oxygen oxidoreductase (12-hydroxylating). This enzyme catalyses the following chemical reaction

References

  1. Wittstock U, Halkier BA (May 2000). "Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate". The Journal of Biological Chemistry. 275 (19): 14659–66. doi: 10.1074/jbc.275.19.14659 . PMID   10799553.
  2. Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N (2020). "Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants" (PDF). Phytochemistry. 169: 112100. Bibcode:2020PChem.169k2100B. doi: 10.1016/j.phytochem.2019.112100 . PMID   31771793. S2CID   208318505.