CYP35B1

Last updated
Cytochrome P450 Dod-13
Identifiers
Organism Caenorhabditis elegans
SymbolDod-13
Alt. symbolsCYP35B1
Entrez 178803
HomoloGene 116141
RefSeq (mRNA) NM_001322546
UniProt O44650
Other data
Chromosome V: 3.94 - 3.94 Mb

The Dod-13 gene in the worm Caenorhabditis elegans encoding a cytochrome p450 enzyme, which have steroid hydroxylase activity, with the CYP Symbol CYP35B1 (Cytochrome P450, family 35, member B1). [1] Dod-13 is downstream gene of Daf-16 influenced the lifespan of C. elegans. [2]

Related Research Articles

<i>Caenorhabditis elegans</i> Free-living species of nematode

Caenorhabditis elegans is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek caeno- (recent), rhabditis (rod-like) and Latin elegans (elegant). In 1900, Maupas initially named it Rhabditides elegans. Osche placed it in the subgenus Caenorhabditis in 1952, and in 1955, Dougherty raised Caenorhabditis to the status of genus.

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 (CYPs) are a superfamily of enzymes containing heme as a cofactor that functions as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

The DAF-2 gene encodes for the insulin-like growth factor 1 (IGF-1) receptor in the worm Caenorhabditis elegans. DAF-2 is part of the first metabolic pathway discovered to regulate the rate of aging. DAF-2 is also known to regulate reproductive development, resistance to oxidative stress, thermotolerance, resistance to hypoxia, and resistance to bacterial pathogens. Mutations in DAF-2 have been shown by Cynthia Kenyon to double the lifespan of the worms. In a 2007 episode of WNYC’s Radiolab, Kenyon called DAF-2 "the grim reaper gene.”

Dauer describes an alternative developmental stage of nematode worms, particularly rhabditids including Caenorhabditis elegans, whereby the larva goes into a type of stasis and can survive harsh conditions. Since the entrance of the dauer stage is dependent on environmental cues, it represents a classic and well studied example of polyphenism. The dauer state is given other names in the various types of nematodes such as ‘diapause’ or ‘hypobiosis’, but since the C. elegans nematode has become the most studied nematode, the term ‘dauer stage’ or 'dauer larvae' is becoming universally recognised when referring to this state in other free-living nematodes. The dauer stage is also considered to be equivalent to the infective stage of parasitic nematode larvae.

<span class="mw-page-title-main">Cynthia Kenyon</span> US molecular biologist

Cynthia Jane Kenyon is an American molecular biologist and biogerontologist known for her genetic dissection of aging in a widely used model organism, the roundworm Caenorhabditis elegans. She is the vice president of aging research at Calico Research Labs, and emeritus professor of biochemistry and biophysics at the University of California, San Francisco (UCSF).

<span class="mw-page-title-main">CYP3A43</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 3A43 is a protein that in humans is encoded by the CYP3A43 gene.

<span class="mw-page-title-main">CYP26B1</span>

Cytochrome P450 26B1 is a protein that in humans is encoded by the CYP26B1 gene.

<span class="mw-page-title-main">CYP26C1</span> Protein-coding gene in the species Homo sapiens

CYP26C1 is a protein which in humans is encoded by the CYP26C1gene.

<span class="mw-page-title-main">Daf-16</span> Ortholog

DAF-16 is the sole ortholog of the FOXO family of transcription factors in the nematode Caenorhabditis elegans. It is responsible for activating genes involved in longevity, lipogenesis, heat shock survival and oxidative stress responses. It also protects C.elegans during food deprivation, causing it to transform into a hibernation - like state, known as a Dauer. DAF-16 is notable for being the primary transcription factor required for the profound lifespan extension observed upon mutation of the insulin-like receptor DAF-2. The gene has played a large role in research into longevity and the insulin signalling pathway as it is located in C. elegans, a successful ageing model organism.

<span class="mw-page-title-main">Genetics of aging</span> Overview of the genetics of aging

Genetics of aging is generally concerned with life extension associated with genetic alterations, rather than with accelerated aging diseases leading to reduction in lifespan.

<span class="mw-page-title-main">Julie Ahringer</span> American geneticist

Julie Ann Ahringer is an American/British Professor of Genetics and Genomics, Director of the Gurdon Institute and a member of the Department of Genetics at the University of Cambridge. She leads a research lab investigating the control of gene expression.

Host microbe interactions in <i>Caenorhabditis elegans</i>

Caenorhabditis elegans- microbe interactions are defined as any interaction that encompasses the association with microbes that temporarily or permanently live in or on the nematode C. elegans. The microbes can engage in a commensal, mutualistic or pathogenic interaction with the host. These include bacterial, viral, unicellular eukaryotic, and fungal interactions. In nature C. elegans harbours a diverse set of microbes. In contrast, C. elegans strains that are cultivated in laboratories for research purposes have lost the natural associated microbial communities and are commonly maintained on a single bacterial strain, Escherichia coli OP50. However, E. coli OP50 does not allow for reverse genetic screens because RNAi libraries have only been generated in strain HT115. This limits the ability to study bacterial effects on host phenotypes. The host microbe interactions of C. elegans are closely studied because of their orthologs in humans. Therefore, the better we understand the host interactions of C. elegans the better we can understand the host interactions within the human body.

Coleen T. Murphy is a geneticist and Richard B. Fisher Preceptor in Integrative Genomics Professor of Molecular Biology at the Lewis-Sigler Institute for Integrative Genomics at Princeton University. She is director of the Paul F. Glenn Laboratories For Aging Research at Princeton.

The DAF-12 gene encodes the nuclear receptor of dafachronic acid in the worm Caenorhabditis elegans, with the NRNC Symbol NR1J1 as the homolog of nuclear hormone receptor HR96 in Drosophila melanogaster. DAF-12 has been implicated by Cynthia Kenyon and colleagues in the formation of Dauer larva.

The Daf-9 gene encodes a cytochrome p450 enzyme catalysis the generation of dafachronic acid in the worm Caenorhabditis elegans, with the CYP Symbol CYP22A1. After generation, dafachronic acid will binding it's nuclear receptor Daf-12 and has been implicated by Cynthia Kenyon and colleagues related to the formation of Dauer larva.

Cytochrome P450, family 13, also known as CYP13, is a nematoda cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP13A1 from the Caenorhabditis elegans.

Cytochrome P450, family 14, also known as CYP14, is a nematoda cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP14A1 from the Caenorhabditis elegans. The function of most genes in this family is unknown.

Cytochrome P450, family 23, also known as CYP23, is a nematoda cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP23A1 from the Caenorhabditis elegans, is a homolog of the human gene CYP7B1.

Cytochrome P450, family 25, also known as CYP25, is a nematoda cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP25A1 from the Caenorhabditis elegans.

<span class="mw-page-title-main">Age-1</span> Gene

The age-1 gene is located on chromosome 2 in C.elegans. It gained attention in 1983 for its ability to induce long-lived C. elegans mutants. The age-1 mutant, first identified by Michael Klass, was reported to extend mean lifespan by over 50% at 25 °C when compared to the wild type worm (N2) in 1987 by Johnson et al. Development, metabolism, lifespan, among other processes have been associated with age-1 expression. The age-1 gene is known to share a genetic pathway with daf-2 gene that regulates lifespan in worms. Additionally, both age-1 and daf-2 mutants are dependent on daf-16 and daf-18 genes to promote lifespan extension.

References

  1. Iser WB, Wilson MA, Wood WH, Becker K, Wolkow CA (March 2011). "Co-regulation of the DAF-16 target gene, cyp-35B1/dod-13, by HSF-1 in C. elegans dauer larvae and daf-2 insulin pathway mutants". PLOS ONE. 6 (3): e17369. Bibcode:2011PLoSO...617369I. doi: 10.1371/journal.pone.0017369 . PMC   3052305 . PMID   21408062.
  2. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, et al. (July 2003). "Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans". Nature. 424 (6946): 277–83. Bibcode:2003Natur.424..277M. doi:10.1038/nature01789. PMID   12845331. S2CID   4424249.