CYP2C19

Last updated

CYP2C19
Protein CYP2C19 PDB 1r9o.png
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases CYP2C19 , CPCJ, CYP2C, CYPIIC17, CYPIIC19, P450C2C, P450IIC19, cytochrome P450 family 2 subfamily C member 19
External IDs OMIM: 124020; HomoloGene: 133565; GeneCards: CYP2C19; OMA:CYP2C19 - orthologs
EC number 1.14.14.51
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000769

n/a

RefSeq (protein)

NP_000760

n/a

Location (UCSC) Chr 10: 94.76 – 94.86 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Cytochrome P450 2C19 (abbreviated CYP2C19) is an enzyme protein. It is a member of the CYP2C subfamily of the cytochrome P450 mixed-function oxidase system. This subfamily includes enzymes that catalyze metabolism of xenobiotics, including some proton pump inhibitors and antiepileptic drugs. In humans, it is the CYP2C19 gene that encodes the CYP2C19 protein. [3] [4] CYP2C19 is a liver enzyme that acts on at least 10% of drugs in current clinical use, [5] most notably the antiplatelet treatment clopidogrel (Plavix), drugs that treat pain associated with ulcers, such as omeprazole, antiseizure drugs such as mephenytoin, the antimalarial proguanil, and the anxiolytic diazepam. [6]

Contents

CYP2C19 has been annotated as (R)-limonene 6-monooxygenase and (S)-limonene 6-monooxygenase in UniProt.

Function

The gene encodes a member of the cytochrome P450 superfamily of enzymes. Enzymes in the CYP2C subfamily, including CYP2C19, account for approximately 20% of cytochrome P450 in the adult liver. [7] These proteins are monooxygenases that catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and is known to metabolize many drugs. Polymorphism within this gene is associated with variable ability to metabolize drugs. The gene is located within a cluster of cytochrome P450 genes on chromosome no.10 arm q24. [8]

CYP2C19 also possesses epoxygenase activity: it is one of the principal enzymes responsible for attacking various long-chain polyunsaturated fatty acids at their double (i.e. alkene) bonds to form epoxide products that act as signaling agents. It metabolizes:

  1. arachidonic acid to various epoxyeicosatrienoic acids (also termed EETs);
  2. linoleic acid to 9,10-epoxy octadecenoic acids (also termed vernolic acid, linoleic acid 9:10-oxide, or leukotoxin) and 12,13-epoxy-octadecenoic (also termed coronaric acid, linoleic acid 12,13-oxide, or isoleukotoxin);
  3. docosahexaenoic acid to various epoxydocosapentaenoic acids (also termed EDPs); and
  4. eicosapentaenoic acid to various epoxyeicosatetraenoic acids (also termed EEQs). [9] [10] [11]

Along with CYP2C19, CYP2C8, CYP2C9, CYP2J2, and possibly CYP2S1 are the main producers of EETs and, very likely EEQs, EDPs, and the epoxides of linoleic acid. [10] [12]

Pharmacogenomics

Pharmacogenomics is a study that analyzes how an individual's genetic makeup affects the response to drugs of this individual. There are many common genetic variations that affect the expression of the CYP2C19 gene, which in turn influences the enzyme activity in the metabolic pathways of those drugs in which this enzyme is involved.

The Clinical Pharmacogenetics Implementation Consortium (CPIC) provides therapeutic guidelines that are widely utilized to suggest suitable treatment plans. These recommendations are particularly relevant for patients requiring antiplatelet medication and are based on the results of genotype testing. A key aspect of these CPIC guidelines is the translation of genotype to phenotype, a process that relies on the "star" nomenclature system [13] maintained by the Pharmacogene Variation Consortium [14] assigns labels to known polymorphisms that affect drug response. A label consists of a star (asterisk) character (*) followed by a number. The most common variant (also called wild type) has "CYP2C19*1" label. The variant genotypes of CYP2C19*2 (NM_000769.2:c.681GA; p.Pro227Pro; rs4244285), CYP2C19*3 (NM_000769.2:c.636G>A; p.Trp212Ter; rs4986893) and CYP2C19*17 (NM_000769.2:c.-806C>T; rs12248560) [15] are major factors attributed to interindividual differences in the pharmacokinetics and response to CYP2C19 substrates.

CYP2C19*2 and *3 (loss-of-function alleles) are associated with diminished enzyme activity, [16] [17] whereas CYP2C19*17 (gain-of-function allele) results in increased activity. [18] The Working Group of the Association for Molecular Pathology Clinical Practice Committee recommended these three variant alleles to be included in the minimal clinical pharmacogenomic testing panel, called tier 1. The extended panel of variant alleles, called tier 2, additionally includes the following CYP2C19 alleles: *4.001 (*4A), *4.002 (*4B), *5, *6, *7, *8, *9, *10, and *35, all of them associated with diminished enzyme activity. Although these tier 2 alleles are included in many platforms, they were not included in the tier 1 recommendations because of low minor allele frequency (which can increase false-positive occurrences), less well-characterized impact on CYP2C19 function, or a lack of reference materials. In partnership with the clinical testing community, the Centers for Disease Control and Prevention established the Genetic Testing Reference Material Program to meet the need for publicly available characterized reference materials. Its goal is to improve the supply of publicly available and well-characterized genomic DNA used as reference materials for proficiency testing, quality control, test development/validation, and research studies. [15]

The allele frequencies of CYP2C19*2 and *3 are significantly higher in Chinese populations than in European or African populations, [19] and are found at approximately 3–5% of European and 15–20% of Asian populations. [20] [21] Among Arab population, the frequency of CYP2C19 genotypes including *1/*17, *1/*2, *2/*2, *3/*3, and *1/*3 were 20.2%, 16.7%, 6.1%, 5.45%, 0.7%, and 0.35%, respectively. [22] In a study of 2.29 million direct-to-consumer genetics research participants, the overall frequencies of *2, *3, and *17 were 15.2%, 0.3%, and 20.4%, respectively, but varied by ethnicity. The most common variant diplotypes were *1/*17 at 26% and *1/*2 at 19.4%. The less common *2/*17, *17/*17 and *2/*2 genotypes occurred at 6.0%, 4.4%, and 2.5%, respectively. Overall, 58.3% of participants had at least one increased-function or no-function CYP2C19 allele. [23]

CYP2C19 is involved in processing or metabolizing at least 10% of commonly prescribed drugs. [24] Variations to the enzyme can have a wide range of impacts to drug metabolism. In patients with an abnormal CYP2C19 variant certain benzodiazepines should be avoided, such as diazepam (Valium), lorazepam (Ativan), oxazepam (Serax), and temazepam (Restoril). [25] Other categories of drugs impacted by modified CYP2C19 include proton pump inhibitors, anticonvulsants, hypnotics, sedatives, antimalarial drugs, and antiretroviral drugs. [24]

On the basis of their ability to metabolize (S)-mephenytoin or other CYP2C19 substrates, individuals can be classified as ultrarapid metabolizers (UM), extensive metabolizers (EM) or poor metabolizers (PM). [21] [26] In the case of proton pump inhibitors, PMs exhibit a drug exposure that is 3 to 13 times higher than that of EMs. [27] Loss-of-function alleles, CYP2C19*2 and CYP2C19*3 (and others, which are the subject of ongoing research) predict PMs, [21] and the gain-of-function CYP2C19*17 allele predicts UMs. [24]

Although the amount of CYP2C19 enzyme produced by the *17 allele is greater than of the *1 allele, [28] whether the carriers of the *17 allele experience any significant difference in response to drugs compared to the wild-type, is a topic of ongoing research, studies show varying results. [26] [29] Some studies have found that the *17 variant's effect on the metabolism of omeprazole, pantoprazole, escitalopram, sertraline, voriconazole, tamoxifen and clopidogrel [26] [30] is modest, particularly compared to the impact of loss-of-function alleles (*2, *3), therefore, in case of these medications, the EM designation is sometimes applied instead of the UM one. [26] For example, carriers of the *17 allele did not demonstrate different gastric pH comparing to *1 after taking the proton pump inhibitor omeprazole, a CYP2C19 substrate. [26] Other studies concluded that the *17 allele seems to be the factor responsible for lower response to some drugs, even at higher doses, for example, to escitalopram for symptom remission in major depressive disorder patients. [29] CYP2C19*17 carrier status is significantly associated with enhanced response to clopidogrel and an increased risk of bleeding; the highest risk was observed for CYP2C19*17 homozygous patients. [31] [32] A study found that escitalopram serum concentration was 42% lower in patients homozygous for CYP2C19*17. [33] An important limitation of all these studies is the single-gene analysis, since most drugs that are metabolized by CYP2C19 are also metabolized by CYP2D6 and CYP3A4 enzymes. Besides that, other genes are involved in drug response, for example, escitalopram is transported by P-glycoprotein, encoded by the ABCB1 gene. In order for the studies on CYP2C19*17 to be conclusive, the differences in other genes that affect drug response have to be excluded. [29] The prevalence of the CYP2C19*17 variant is less than 5% in Asian populations and is approximately four times higher in European and African populations. [26]

The alleles CYP2C19*2 [34] and *3 may reduce the efficacy of clopidogrel (Plavix), an antiplatelet medication. The basis for this reduced effect of clopidogrel in patients who have a gene of reduced activity may seem somewhat paradoxical, but can be understood as follows. Clopidogrel is administered as a "prodrug", a drug that is inactive when taken, and then depends on the action of an enzyme in the body to be activated. In patients with a gene of reduced activity, clopidogrel may not be metabolized to its biologically active form and therefore not achieve pharmacological effect in the body. The relative risk of major cardiac events among patients treated with clopidogrel is 1.53 to 3.69 times higher for carriers of CYP2C19*2 and CYP2C19*3 compared with non-carriers. [35] A 2020 systematic review and meta-analysis also confirmed that the CYP2C19*2 variant has a strong association with clopidogrel resistance. [34] In 2021 a higher risk of stroke at 90 days was found with clopidogrel than ticagrelor, which does not require metabolic conversion, among Han Chinese CYP2C19 loss-of-function carriers with minor ischemic stroke or TIA. [36]

Ligands

The following is a table of selected substrates, inducers, and inhibitors of CYP2C19. Where classes of agents are listed, there may be exceptions within the class.

Inhibitors of CYP2C19 can be classified by their potency, such as:

Selected inducers, inhibitors, and substrates of CYP2C19
SubstratesInhibitorsInducers
Strong
Moderate
Weak
Unspecified potency
Unspecified potency

See also

Related Research Articles

<span class="mw-page-title-main">Omeprazole</span> Medication to treat gastroesophageal reflux disease and other conditions

Omeprazole, sold under the brand names Prilosec and Losec, among others, is a medication used in the treatment of gastroesophageal reflux disease (GERD), peptic ulcer disease, and Zollinger–Ellison syndrome. It is also used to prevent upper gastrointestinal bleeding in people who are at high risk. Omeprazole is a proton-pump inhibitor (PPI) and its effectiveness is similar to that of other PPIs. It can be taken by mouth or by injection into a vein. It is also available in the fixed-dose combination medication omeprazole/sodium bicarbonate as Zegerid and as Konvomep.

<span class="mw-page-title-main">Clopidogrel</span> Antiplatelet medication

Clopidogrel, sold under the brand name Plavix among others, is an antiplatelet medication used to reduce the risk of heart disease and stroke in those at high risk. It is also used together with aspirin in heart attacks and following the placement of a coronary artery stent. It is taken by mouth. Its effect starts about two hours after intake and lasts for five days.

<span class="mw-page-title-main">Pharmacogenomics</span> Study of the role of the genome in drug response

Pharmacogenomics, often abbreviated "PGx," is the study of the role of the genome in drug response. Its name reflects its combining of pharmacology and genomics. Pharmacogenomics analyzes how the genetic makeup of a patient affects their response to drugs. It deals with the influence of acquired and inherited genetic variation on drug response, by correlating DNA mutations with pharmacokinetic, pharmacodynamic, and/or immunogenic endpoints.

<span class="mw-page-title-main">CYP3A4</span> Enzyme that metabolizes substances by oxidation

Cytochrome P450 3A4 is an important enzyme in the body, mainly found in the liver and in the intestine, which in humans is encoded by CYP3A4 gene. It oxidizes small foreign organic molecules (xenobiotics), such as toxins or drugs, so that they can be removed from the body. It is highly homologous to CYP3A5, another important CYP3A enzyme.

<span class="mw-page-title-main">CYP2D6</span> Human liver enzyme

Cytochrome P450 2D6 (CYP2D6) is an enzyme that in humans is encoded by the CYP2D6 gene. CYP2D6 is primarily expressed in the liver. It is also highly expressed in areas of the central nervous system, including the substantia nigra.

<span class="mw-page-title-main">CYP2E1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2E1 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. This class of enzymes is divided up into a number of subcategories, including CYP1, CYP2, and CYP3, which as a group are largely responsible for the breakdown of foreign compounds in mammals.

<span class="mw-page-title-main">CYP2A6</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2A6 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. CYP2A6 is the primary enzyme responsible for the oxidation of nicotine and cotinine. It is also involved in the metabolism of several pharmaceuticals, carcinogens, and a number of coumarin-type alkaloids. CYP2A6 is the only enzyme in the human body that appreciably catalyzes the 7-hydroxylation of coumarin, such that the formation of the product of this reaction, 7-hydroxycoumarin, is used as a probe for CYP2A6 activity.

<span class="mw-page-title-main">CYP1A2</span> Enzyme in the human body

Cytochrome P450 1A2, a member of the cytochrome P450 mixed-function oxidase system, is involved in the metabolism of xenobiotics in the human body. In humans, the CYP1A2 enzyme is encoded by the CYP1A2 gene.

<span class="mw-page-title-main">CYP2C9</span> Enzyme protein

Cytochrome P450 family 2 subfamily C member 9 is an enzyme protein. The enzyme is involved in the metabolism, by oxidation, of both xenobiotics, including drugs, and endogenous compounds, including fatty acids. In humans, the protein is encoded by the CYP2C9 gene. The gene is highly polymorphic, which affects the efficiency of the metabolism by the enzyme.

<span class="mw-page-title-main">CYP2C8</span> Gene-coded protein involved in metabolism of xenobiotics

Cytochrome P4502C8 (CYP2C8) is a member of the cytochrome P450 mixed-function oxidase system involved in the metabolism of xenobiotics in the body. Cytochrome P4502C8 also possesses epoxygenase activity, i.e. it metabolizes long-chain polyunsaturated fatty acids, e.g. arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, and linoleic acid to their biologically active epoxides.

<span class="mw-page-title-main">CYP1A1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450, family 1, subfamily A, polypeptide 1 is a protein that in humans is encoded by the CYP1A1 gene. The protein is a member of the cytochrome P450 superfamily of enzymes.

AmpliChip CYP450 Test is a clinical test from Roche and part of the AmpliChip series. The test aims to find the specific gene types ( genotypes) of the patient that will determine how he or she metabolizes certain medicines, and therefore guides the doctors to prescribe the medicine suited for the best effectiveness and least side effects.

<span class="mw-page-title-main">CYP2B6</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2B6 is an enzyme that in humans is encoded by the CYP2B6 gene. CYP2B6 is a member of the cytochrome P450 group of enzymes. Along with CYP2A6, it is involved with metabolizing nicotine, along with many other substances.

<span class="mw-page-title-main">CYP3A5</span> Enzyme involved in drug metabolism

Cytochrome P450 3A5 is a protein that in humans is encoded by the CYP3A5 gene.

<span class="mw-page-title-main">CYP4A11</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4A11 is a protein that in humans is codified by the CYP4A11 gene.

<span class="mw-page-title-main">CYP4F2</span> Enzyme protein in the species Homo sapiens

Cytochrome P450 4F2 is a protein that in humans is encoded by the CYP4F2 gene. This protein is an enzyme, a type of protein that catalyzes chemical reactions inside cells. This specific enzyme is part of the superfamily of cytochrome P450 (CYP) enzymes, and the encoding gene is part of a cluster of cytochrome P450 genes located on chromosome 19.

Epoxygenases are a set of membrane-bound, heme-containing cytochrome P450 enzymes that metabolize polyunsaturated fatty acids to epoxide products that have a range of biological activities. The most thoroughly studied substrate of the CYP epoxylgenases is arachidonic acid. This polyunsaturated fatty acid is metabolized by cyclooxygenases to various prostaglandin, thromboxane, and prostacyclin metabolites in what has been termed the first pathway of eicosanoid production; it is also metabolized by various lipoxygenases to hydroxyeicosatetraenoic acids and leukotrienes in what has been termed the second pathway of eicosanoid production. The metabolism of arachidonic acid to epoxyeicosatrienoic acids by the CYP epoxygenases has been termed the third pathway of eicosanoid metabolism. Like the first two pathways of eicosanoid production, this third pathway acts as a signaling pathway wherein a set of enzymes metabolize arachidonic acid to a set of products that act as secondary signals to work in activating their parent or nearby cells and thereby orchestrate functional responses. However, none of these three pathways is limited to metabolizing arachidonic acid to eicosanoids. Rather, they also metabolize other polyunsaturated fatty acids to products that are structurally analogous to the eicosanoids but often have different bioactivity profiles. This is particularly true for the CYP epoxygenases which in general act on a broader range of polyunsaturated fatty acids to form a broader range of metabolites than the first and second pathways of eicosanoid production. Furthermore, the latter pathways form metabolites many of which act on cells by binding with and thereby activating specific and well-characterized receptor proteins; no such receptors have been fully characterized for the epoxide metabolites. Finally, there are relatively few metabolite-forming lipoxygenases and cyclooxygenases in the first and second pathways and these oxygenase enzymes share similarity between humans and other mammalian animal models. The third pathway consists of a large number of metabolite-forming CYP epoxygenases and the human epoxygenases have important differences from those of animal models. Partly because of these differences, it has been difficult to define clear roles for the epoxygenase-epoxide pathways in human physiology and pathology.

Adenosine diphosphate (ADP) receptor inhibitors are a drug class of antiplatelet agents, used in the treatment of acute coronary syndrome (ACS) or in preventive treatment for patients who are in risk of thromboembolism, myocardial infarction or a stroke. These drugs antagonize the P2Y12 platelet receptors and therefore prevent the binding of ADP to the P2Y12 receptor. This leads to a decrease in aggregation of platelets, prohibiting thrombus formation. The P2Y12 receptor is a surface bound protein found on blood platelets. They belong to G protein-coupled purinergic receptors (GPCR) and are chemoreceptors for ADP.

<span class="mw-page-title-main">20-Hydroxyeicosatetraenoic acid</span> Chemical compound

20-Hydroxyeicosatetraenoic acid, also known as 20-HETE or 20-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid, is an eicosanoid metabolite of arachidonic acid that has a wide range of effects on the vascular system including the regulation of vascular tone, blood flow to specific organs, sodium and fluid transport in the kidney, and vascular pathway remodeling. These vascular and kidney effects of 20-HETE have been shown to be responsible for regulating blood pressure and blood flow to specific organs in rodents; genetic and preclinical studies suggest that 20-HETE may similarly regulate blood pressure and contribute to the development of stroke and heart attacks. Additionally the loss of its production appears to be one cause of the human neurological disease, Hereditary spastic paraplegia. Preclinical studies also suggest that the overproduction of 20-HETE may contribute to the progression of certain human cancers, particularly those of the breast.

In biochemistry, cytochrome P450 enzymes have been identified in all kingdoms of life: animals, plants, fungi, protists, bacteria, and archaea, as well as in viruses. As of 2018, more than 300,000 distinct CYP proteins are known.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000165841 Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA (April 1991). "Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily". Biochemistry. 30 (13): 3247–3255. doi:10.1021/bi00227a012. PMID   2009263.
  4. Gray IC, Nobile C, Muresu R, Ford S, Spurr NK (July 1995). "A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10q24". Genomics. 28 (2): 328–332. doi:10.1006/geno.1995.1149. PMID   8530044.
  5. "CYP2C19 gene". NIH Genetics Home Reference. Archived from the original on 6 September 2017. Retrieved 6 September 2017.
  6. "Cytochrome P450 2C19 (CYP2C19) Genotype". Mayo Medical Laboratories. June 2013. Archived from the original on 15 April 2016. Retrieved 11 November 2014.
  7. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, Hines RN (March 2004). "Developmental expression of human hepatic CYP2C9 and CYP2C19". The Journal of Pharmacology and Experimental Therapeutics. 308 (3): 965–974. doi:10.1124/jpet.103.060137. PMID   14634042. S2CID   14838446.
  8. "Entrez Gene: CYP2C19 cytochrome P450, family 2, subfamily C, polypeptide 19". National Center for Biotechnology Information. Archived from the original on 8 April 2021. Retrieved 30 November 2020. This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and is known to metabolize many xenobiotics, including the anticonvulsive drug mephenytoin, omeprazole, diazepam and some barbiturates. Polymorphism within this gene is associated with variable ability to metabolize mephenytoin, known as the poor metabolizer and extensive metabolizer phenotypes. The gene is located within a cluster of cytochrome P450 genes on chromosome 10q24.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  9. Fleming I (October 2014). "The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease". Pharmacological Reviews. 66 (4): 1106–1140. doi: 10.1124/pr.113.007781 . PMID   25244930.
  10. 1 2 Wagner K, Vito S, Inceoglu B, Hammock BD (October 2014). "The role of long chain fatty acids and their epoxide metabolites in nociceptive signaling". Prostaglandins & Other Lipid Mediators. 113–115: 2–12. doi:10.1016/j.prostaglandins.2014.09.001. PMC   4254344 . PMID   25240260.
  11. Fischer R, Konkel A, Mehling H, Blossey K, Gapelyuk A, Wessel N, von Schacky C, Dechend R, Muller DN, Rothe M, Luft FC, Weylandt K, Schunck WH (June 2014). "Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway". Journal of Lipid Research. 55 (6): 1150–1164. doi: 10.1194/jlr.M047357 . PMC   4031946 . PMID   24634501.
  12. Spector AA, Kim HY (April 2015). "Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1851 (4): 356–365. doi:10.1016/j.bbalip.2014.07.020. PMC   4314516 . PMID   25093613.
  13. Shubbar Q, Alchakee A, Issa KW, Adi AJ, Shorbagi AI, Saber-Ayad M (2024). "From genes to drugs: CYP2C19 and pharmacogenetics in clinical practice". Front Pharmacol. 15: 1326776. doi: 10.3389/fphar.2024.1326776 . PMC   10899532 . PMID   38420192.
  14. Gaedigk A, Casey ST, Whirl-Carrillo M, Miller NA, Klein TE (September 2021). "Pharmacogene Variation Consortium: A Global Resource and Repository for Pharmacogene Variation". Clin Pharmacol Ther. 110 (3): 542–545. doi:10.1002/cpt.2321. PMC   8725060 . PMID   34091888.
  15. 1 2 Pratt VM, Del Tredici AL, Hachad H, Ji Y, Kalman LV, Scott SA, Weck KE (May 2018). "Recommendations for Clinical CYP2C19 Genotyping Allele Selection: A Report of the Association for Molecular Pathology". The Journal of Molecular Diagnostics. 20 (3): 269–276. doi: 10.1016/j.jmoldx.2018.01.011 . hdl: 1805/15738 . PMID   29474986.
  16. Ibeanu GC, Goldstein JA, Meyer U, Benhamou S, Bouchardy C, Dayer P, et al. (September 1998). "Identification of new human CYP2C19 alleles (CYP2C19*6 and CYP2C19*2B) in a Caucasian poor metabolizer of mephenytoin". The Journal of Pharmacology and Experimental Therapeutics. 286 (3): 1490–1495. PMID   9732415.
  17. Fukushima-Uesaka H, Saito Y, Maekawa K, Ozawa S, Hasegawa R, Kajio H, et al. (August 2005). "Genetic variations and haplotypes of CYP2C19 in a Japanese population". Drug Metabolism and Pharmacokinetics. 20 (4): 300–307. doi:10.2133/dmpk.20.300. PMID   16141610.
  18. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, Ingelman-Sundberg M (January 2006). "A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants". Clinical Pharmacology and Therapeutics. 79 (1): 103–113. doi:10.1016/j.clpt.2005.10.002. PMID   16413245. S2CID   20989576.
  19. Wedlund PJ (September 2000). "The CYP2C19 enzyme polymorphism". Pharmacology. 61 (3): 174–183. doi:10.1159/000028398. PMID   10971203. S2CID   24471776.
  20. Bertilsson L (September 1995). "Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19". Clinical Pharmacokinetics. 29 (3): 192–209. doi:10.2165/00003088-199529030-00005. PMID   8521680. S2CID   111743.
  21. 1 2 3 Desta Z, Zhao X, Shin JG, Flockhart DA (2002). "Clinical significance of the cytochrome P450 2C19 genetic polymorphism". Clinical Pharmacokinetics. 41 (12): 913–958. doi:10.2165/00003088-200241120-00002. PMID   12222994. S2CID   27616494.
  22. Alkattan A, Almutairi Y, Alsalameen E, Alkhalifah A, Alghanim F (2021). "The CYP2C19 genotypes and its effect on clopidogrel as an anti-platelet drug among the Arab population". Indian Journal of Pharmacology. 53 (1): 85–87. doi: 10.4103/ijp.IJP_690_20 . PMC   8216117 . PMID   33976007.
  23. Ionova Y, Ashenhurst J, Zhan J, Nhan H, Kosinski C, Tamraz B, Chubb A (June 2020). "CYP2C19 allele frequencies in over 2.2 million direct-to-consumer genetics research participants and the potential implication for prescriptions in a large health system". Clinical and Translational Science. 13 (6): 1298–1306. doi: 10.1111/cts.12830 . PMC   7719394 . PMID   32506666.
  24. 1 2 3 "CYP2C19 gene". Genetics Home Reference. Archived from the original on 3 June 2020. Retrieved 6 March 2020.
  25. Forest T (2014). "American Association of Clinical Chemistry Annual Meeting 2014: Utility of Genetic Testing in Practical Pain Management". AutoGenomics. Archived from the original on 11 November 2014. Retrieved 11 November 2014.
  26. 1 2 3 4 5 6 7 8 9 Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J (March 2010). "Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17". British Journal of Clinical Pharmacology. 69 (3): 222–230. doi:10.1111/j.1365-2125.2009.03578.x. PMC   2829691 . PMID   20233192.
  27. Klotz U, Schwab M, Treiber G (July 2004). "CYP2C19 polymorphism and proton pump inhibitors". Basic & Clinical Pharmacology & Toxicology. 95 (1): 2–8. doi: 10.1111/j.1600-0773.2004.pto950102.x . PMID   15245569.
  28. Psychiatric Pharmacogenomics. Oup USA. 2010. p. 62. ISBN   978-0195367294.
  29. 1 2 3 Bernini de Brito R, Ghedini PC (May 2020). "CYP2C19 polymorphisms and outcomes of Escitalopram treatment in Brazilians with major depression". Heliyon. 6 (5): e04015. Bibcode:2020Heliy...604015B. doi: 10.1016/j.heliyon.2020.e04015 . PMC   7264488 . PMID   32509985.
  30. Lee CR, Thomas CD, Beitelshees AL, Tuteja S, Empey PE, Lee JC, et al. (IGNITE Network Pharmacogenetics Working Group) (March 2021). "Impact of the CYP2C19*17 Allele on Outcomes in Patients Receiving Genotype-Guided Antiplatelet Therapy After Percutaneous Coronary Intervention". Clinical Pharmacology and Therapeutics. 109 (3): 705–715. doi:10.1002/cpt.2039. PMC   7902344 . PMID   32897581.
  31. Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, et al. (February 2010). "Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement". Circulation. 121 (4): 512–518. doi: 10.1161/CIRCULATIONAHA.109.885194 . PMID   20083681. S2CID   13408332.
  32. Li Y, Tang HL, Hu YF, Xie HG (February 2012). "The gain-of-function variant allele CYP2C19*17: a double-edged sword between thrombosis and bleeding in clopidogrel-treated patients". Journal of Thrombosis and Haemostasis. 10 (2): 199–206. doi: 10.1111/j.1538-7836.2011.04570.x . PMID   22123356. S2CID   35503064.
  33. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E (February 2008). "Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients". Clinical Pharmacology and Therapeutics. 83 (2): 322–327. doi:10.1038/sj.clpt.6100291. PMID   17625515. S2CID   7772078.
  34. 1 2 Sun Y, Lu Q, Tao X, Cheng B, Yang G (2020). "Cyp2C19*2 Polymorphism Related to Clopidogrel Resistance in Patients With Coronary Heart Disease, Especially in the Asian Population: A Systematic Review and Meta-Analysis". Frontiers in Genetics. 11: 576046. doi: 10.3389/fgene.2020.576046 . PMC   7783419 . PMID   33414804.
  35. Paré G, Mehta SR, Yusuf S, Anand SS, Connolly SJ, Hirsh J, et al. (October 2010). "Effects of CYP2C19 genotype on outcomes of clopidogrel treatment" (PDF). The New England Journal of Medicine. 363 (18): 1704–1714. doi:10.1056/NEJMoa1008410. hdl: 20.500.11820/bc7f2526-cc05-416a-a5c4-12c7afed4a12 . PMID   20979470. Archived (PDF) from the original on 22 July 2018. Retrieved 16 March 2020.
  36. Wang Y, Meng X, Wang A, Xie X, Pan Y, Johnston SC, et al. (December 2021). "Ticagrelor versus Clopidogrel in CYP2C19 Loss-of-Function Carriers with Stroke or TIA". The New England Journal of Medicine. 385 (27): 2520–2530. doi: 10.1056/NEJMoa2111749 . PMID   34708996. S2CID   240072625. Archived from the original on 6 March 2023. Retrieved 11 June 2022.
  37. 1 2 3 Center for Drug Evaluation and Research. "Drug Interactions & Labeling – Drug Development and Drug Interactions: Table of Substrates, Inhibitors, and Inducers". FDA. Archived from the original on 10 May 2016. Retrieved 1 June 2016.
  38. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Flockhart DA (2007). "Drug Interactions: Cytochrome P450 Drug Interaction Table". Indiana University School of Medicine. Archived from the original on 10 October 2007. Retrieved 10 July 2011.
  39. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Sjöqvist F. (It is not clear that Moclobemide is a "strong" inhibitor of CYP2C19) articleID=18352 "Fakta för förskrivare: Interaktion mellan läkemedel" [Facts for prescribers: Interaction between drugs]. FASS Vårdpersonal (in Swedish). Archived from the original on 11 June 2002. Retrieved 10 July 2011.{{cite web}}: Check |url= value (help)
  40. Zhu AZ, Zhou Q, Cox LS, Ahluwalia JS, Benowitz NL, Tyndale RF (November 2014). "Gene variants in CYP2C19 are associated with altered in vivo bupropion pharmacokinetics but not bupropion-assisted smoking cessation outcomes". Drug Metabolism and Disposition. 42 (11): 1971–1977. doi:10.1124/dmd.114.060285. PMC   4201132 . PMID   25187485.
  41. Alkattan A, Alsalameen E. "Polymorphisms of genes related to phase-I metabolic enzymes affecting the clinical efficacy and safety of clopidogrel treatment". Expert Opin Drug Metab Toxicol. 2021 May 15:1–11. doi : 10.1080/17425255.2021.1925249. Epub ahead of print. PMID   33931001.
  42. Miyazawa M, Shindo M, Shimada T (May 2002). "Metabolism of (+)- and (–)–limonenes to respective carveols and perillyl alcohols by CYP2C9 and CYP2C19 in human liver microsomes". Drug Metabolism and Disposition. 30 (5): 602–607. doi:10.1124/dmd.30.5.602. PMID   11950794. S2CID   2120209.
  43. Zhang Y, Si D, Chen X, Lin N, Guo Y, Zhou H, Zhong D (July 2007). "Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects". British Journal of Clinical Pharmacology. 64 (1): 67–74. doi:10.1111/j.1365-2125.2007.02846.x. PMC   2000619 . PMID   17298483.
  44. Xu H, Williams KM, Liauw WS, Murray M, Day RO, McLachlan AJ (April 2008). "Effects of St John's wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide". British Journal of Pharmacology. 153 (7): 1579–1586. doi:10.1038/sj.bjp.0707685. PMC   2437900 . PMID   18204476.
  45. Ingelman-Sundberg M, Pirmohamed M (May 2024). "Precision medicine in cardiovascular therapeutics: Evaluating the role of pharmacogenetic analysis prior to drug treatment". J Intern Med. 295 (5): 583–598. doi: 10.1111/joim.13772 . PMID   38343077.
  46. 1 2 3 4 5 "Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers". FDA. 26 May 2021. Archived from the original on 4 November 2020. Retrieved 21 June 2020.
  47. Park JY, Kim KA, Kim SL (November 2003). "Chloramphenicol is a potent inhibitor of cytochrome P450 isoforms CYP2C19 and CYP3A4 in human liver microsomes". Antimicrobial Agents and Chemotherapy. 47 (11): 3464–3469. doi:10.1128/AAC.47.11.3464-3469.2003. PMC   253795 . PMID   14576103.
  48. Sager JE, Lutz JD, Foti RS, Davis C, Kunze KL, Isoherranen N (June 2014). "Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4". Clinical Pharmacology and Therapeutics. 95 (6): 653–662. doi:10.1038/clpt.2014.50. PMC   4029899 . PMID   24569517.
  49. 1 2 Perucca E, Levy RH (2002). "Combination Therapy and Drug Interactions". In Levy RH, Mattson RH, Meldrum BS, Perucca E (eds.). Antiepileptic drugs (5th ed.). Hagerstwon, MD: Lippincott Williams & Wilkins. p. 100. ISBN   0781723213. OCLC   848759609.
  50. Gjestad C, Westin AA, Skogvoll E, Spigset O (February 2015). "Effect of proton pump inhibitors on the serum concentrations of the selective serotonin reuptake inhibitors citalopram, escitalopram, and sertraline". Therapeutic Drug Monitoring. 37 (1): 90–97. doi:10.1097/FTD.0000000000000101. PMC   4297217 . PMID   24887634.
  51. Wen X, Wang JS, Neuvonen PJ, Backman JT (January 2002). "Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes". European Journal of Clinical Pharmacology. 57 (11): 799–804. doi:10.1007/s00228-001-0396-3. PMID   11868802. S2CID   19299097.
  52. Chen XP, Tan ZR, Huang SL, Huang Z, Ou-Yang DS, Zhou HH (March 2003). "Isozyme-specific induction of low-dose aspirin on cytochrome P450 in healthy subjects". Clinical Pharmacology and Therapeutics. 73 (3): 264–271. doi:10.1067/mcp.2003.14. PMID   12621391. S2CID   24772442.