Cytochrome P450, family 197, also known as CYP197, is a cytochrome P450 monooxygenase family. [1] The first gene identified in this family is the CYP197A1 from Bacillus halodurans . [2] CYP197 is one of the only three P450 families shared in bacteria and archaea, the other two are CYP147 and CYP109. [1] Genes in this family are co-present on archaeal plasmids and chromosomes, implying the plasmid-mediated horizontal gene transfer of these genes from bacteria to archaea. [1]
Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. However, they are not omnipresent; for example, they have not been found in Escherichia coli. In mammals, these enzymes oxidize steroids, fatty acids, xenobiotics, and participate in many biosyntheses. By hydroxylation, CYP450 enzymes convert xenobiotics into hydrophilic derivatives, which are more readily excreted.
Any enzyme system that includes cytochrome P450 protein or domain can be called a P450-containing system.
In enzymology, a camphor 5-monooxygenase (EC 1.14.15.1) is an enzyme that catalyzes the chemical reaction
Cytochrome P450 2A13 is a protein that in humans is encoded by the CYP2A13 gene.
Cytochrome P450 3A43 is a protein that in humans is encoded by the CYP3A43 gene.
Cytochrome P450 BM3 is a Prokaryote Cytochrome P450 enzyme originally from Bacillus megaterium catalyzes the hydroxylation of several long-chain fatty acids at the ω–1 through ω–3 positions. This bacterial enzyme belongs to CYP family CYP102, with the CYP Symbol CYP102A1.This CYP family constitutes a natural fusion between the CYP domain and an NADPH-dependent cytochrome P450 reductase.
Cytochrome P450, family 55, also known as CYP55, is a cytochrome P450 family in fungi supposed to derived from horizontal gene transfer of Actinomycetes CYP105 family member in the ancestor of all Dikarya. The first gene identified in this family is the CYP55A1 from Fusarium oxysporum encoding the NADPH dependent reductase of nitrous oxide.
Cytochrome P450, family 53, also known as CYP53, is a cytochrome P450 monooxygenase family in fungi related to hydrocarbon assimilation. They are distributed in both Ascomycota and Basidiomycota, could be used as anti-fungal drug target. The first gene identified in this family is the CYP53A1 from Aspergillus niger encoding the Benzoate 4-monooxygenase (bphA).
Cytochrome P450, family 710, also known as CYP710, is a plant cytochrome P450 monooxygenase family, the proteins encoded by its family members are mainly sterol 22-desaturase, which was widely distributed in plants, and take participate in Phytosteroidogenesis. CYP710 family is considered to be the plant orthologous of fungi CYP61 family, which is lost in animal. The CYP61/CYP710 ancestor gene diverged from a gene duplication of ancestor CYP51 in early eukaryotes
Cytochrome P450, family 105, also known as CYP105, is a cytochrome P450 monooxygenase family in bacteria, predominantly found in the phylum Actinomycetota and the order Actinomycetales. The first three genes and subfamilies identified in this family is the herbicide-inducible P-450SU1 and P-450SU2 from Streptomyces griseolus and choP from Streptomyces sp's cholesterol oxidase promoter region.
Cytochrome P450, family 107, also known as CYP107, is a cytochrome P450 monooxygenase family in bacteria, found to be conserved and highly populated in Streptomyces and Bacillus species. The first gene identified in this family is Cytochrome P450 eryF (CYP107A1) from Saccharopolyspora erythraea. Many enzymes of this family are involved in the synthesis of macrolide antibiotics. The members of this family are widely distributed in Alphaproteobacteria, cyanobacterial, Mycobacterium, Bacillota, and Streptomyces species, which may be due to horizontal gene transfer driven by selection pressure.
Cytochrome P450, family 16, also known as CYP16, is an animal cytochrome P450 monooxygenase family. This family was the last vertebrate CYP family recognized, and is absent from the mammal and zebrafish genome, but found in other fish and many invertebrates including some very old branches, such as Trichoplax and Oscarella carmela. Synteny mapping of CYP16 family members showing linkages to CYP26 family members, means the tetrapod's CYP26 may evolved from CYP16 of fish.
Cytochrome P450, family 14, also known as CYP14, is a nematoda cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP14A1 from the Caenorhabditis elegans. The function of most genes in this family is unknown.
Cytochrome P450, family 139, also known as CYP139, is a cytochrome P450 monooxygenase family in bacteria. The first gene identified in this family is CYP139A1 from Mycobacterium tuberculosis. Most member of this family belonged to the subfamily A, and involved in the synthesis of secondary metabolites in many mycobacterial species.
Cytochrome P450, family 123, also known as CYP123, is a cytochrome P450 monooxygenase family in bacteria. The first gene in this family to identify function is CYP123A9 from Rhodococcus sp, which catalysis estrone to 16-hydroxyestrone in the estradiol degradation pathway of bacteria.
Cytochrome P450, family 26, also known as CYP26, is an mammal cytochrome P450 monooxygenase family found in human genome. There are three members in the human genome, CYP26A1, CYP26B1 and CYP26C1. Synteny mapping of CYP26 family members showing linkages to CYP16 family members of many invertebrates, means the tetrapod's CYP26 may evolved from CYP16 of fish.
Cytochrome P450 family 109 subfamily B member 1 is a versatile prokaryote monooxygenase of CYP109 family originally from Bacillus subtilis, its three-dimensional protein crystal structure has been solved.
Cytochrome P450 family 109 subfamily E member 1 is a prokaryote monooxygenase of CYP109 family originally from Bacillus megaterium, could atc as a 24- and 25-Hydroxylase for Cholesterol.
Cytochrome P450, family 109, also known as CYP109, is a cytochrome P450 monooxygenase family, many members are associated with fatty acid hydroxylation. The first gene identified in this family is the CYP109A1 and CYP109B1 from Bacillus subtilis. CYP109 is one of the only three P450 families shared in bacteria and archaea, the other two are CYP147 and CYP197. Genes in this family are co-present on archaeal plasmids and chromosomes, implying the plasmid-mediated horizontal gene transfer of these genes from bacteria to archaea.
Cytochrome P450, family 147, also known as CYP147, is a cytochrome P450 monooxygenase family. The first gene identified in this family is the CYP147B1 from Streptomyces avermitilis. CYP147 is one of the only three P450 families shared in bacteria and archaea, the other two are CYP197 and CYP109.