Thromboxane-A synthase

Last updated
Aliases TBXAS1 , BDPLT14, CYP5, CYP5A1, GHOSAL, THAS, TS, TXAS, TXS, thromboxane A synthase 1
External IDs OMIM: 274180 MGI: 98497 HomoloGene: 130979 GeneCards: TBXAS1
RefSeq (mRNA)


RefSeq (protein)


Location (UCSC) Chr 7: 139.78 – 140.02 Mb Chr 6: 38.85 – 39.06 Mb
PubMed search [3] [4]
View/Edit Human View/Edit Mouse

Thromboxane A synthase 1 (EC, platelet, cytochrome P450, family 5, subfamily A), also known as TBXAS1, is a cytochrome P450 enzyme that, in humans, is encoded by the TBXAS1 gene. [5] [6] [7]



This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases that catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids, and other lipids. However, this protein is considered a member of the cytochrome P450 superfamily on the basis of sequence similarity rather than functional similarity. This endoplasmic reticulum membrane protein catalyzes the conversion of prostaglandin H2 to thromboxane A2, a potent vasoconstrictor and inducer of platelet aggregation, and also to 12-Hydroxyheptadecatrienoic acid (i.e. 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid or 12-HHT) an agonist of Leukotriene B4 receptors (i.e. BLT2 receptors) [8] and mediator of certain BLT2 receptor actions. [9] The enzyme plays a role in several pathophysiological processes including hemostasis, cardiovascular disease, and stroke. The gene expresses two transcript variants. [5]

Thromboxane synthase inhibitors

Thromboxane synthase inhibitors are used as antiplatelet drugs. Picotamide acts both as a thromboxane synthase inhibitor and as a thromboxane receptor antagonist. [10]


The human thromboxane A (TXA) synthase is a 60 kDa cytochrome P450 protein with 533 amino acids and a heme prosthetic group. This enzyme, anchored to the endoplasmic reticulum, is found in platelets, monocytes, and several other cell types. The NH2 terminus contains two hydrophobic segments whose secondary structure is believed to be helical. Evidence suggests that the peptides serve as a membrane anchor for the enzyme. [11] Moreover, the study of cDNA clones made possible by polymerase chain reaction techniques has further elucidated the TXA synthase's primary structure. Similar to other members in the cytochrome P450 family, TXA synthase has a heme group coordinated to the thiolate group of a cysteine residue, specifically cysteine 480. [12] Mutagenesis studies that made substitutions at that position resulted in loss of catalytic activity and minimal heme binding. Other residues that had similar results were W133, R478, N110, and R413. Located near the heme propionate groups or the distal face of the heme, these residues are also important for proper integration of heme into the apoprotein. [13] Unfortunately, researchers have found it difficult to obtain a crystal structure of TXA synthase due to the requirement of detergent treatment extraction from the membrane but they have utilized homology modeling to create a 3D structure. One model showed two domains, an alpha-helix-rich domain and a beta-sheet-rich domain. The heme was found to be sandwiched between helices I and L. [14]


This isomerization mechanism shows prostaglandin H2 being converted to thromboxane. A heme group coordinated to a cysteine residue from the enzyme, thromboxane synthase, is involved in the mechanism. Thromboxane Synthase Mechanism.png
This isomerization mechanism shows prostaglandin H2 being converted to thromboxane. A heme group coordinated to a cysteine residue from the enzyme, thromboxane synthase, is involved in the mechanism.

Thromboxane A (TXA) is derived from the prostaglandin H2 (PGH2) molecule. PGH2 contains a relatively weak epidioxy bond, and a possible mechanism is known to involve homolytic cleavage of the epidioxide and a rearrangement to TXA. [15] A heme group in the active site of TXA synthase plays an important role in the mechanism. Stopped-flow kinetic studies with a substrate analog and recombinant TXA synthase revealed that substrate binding occurs in two steps. [13] First, there is a fast initial binding to the protein and then a subsequent ligation to the heme iron. In the first step of the mechanism, the heme iron coordinates to the C-9 endoperoxide oxygen. It participates in homolytic cleavage of the O-O bond in the endoperoxide, which represents the rate-limiting step, and undergoes a change in redox state from Fe(III) to Fe(IV). [16] A free oxygen radical forms at C-11, and this intermediate undergoes ring cleavage. With the free radical now at C-12, the iron heme then oxidizes this radical to a carbocation. [17] The molecule is now ready for intramolecular ring formation. The negatively charged oxygen attacks the carbonyl, and the electrons from one of the double bonds are drawn to the carbocation, thus closing the ring.

Biological significance

Maintaining a balance between prostacyclins and thromboxanes is important in the body, particularly because these two eicosanoids exert opposing effects. In catalyzing the synthesis of thromboxanes, TXA synthase is involved in a flux pathway that can modulate the amount of thromboxane produced. This control becomes an important factor in several processes, such as blood pressure regulation, clotting, and inflammatory responses. Dysregulation of TXA synthase and an imbalance in the prostacyclin-thromboxane ratio are thought to underlie many pathological conditions, such as pulmonary hypertension. [18] Because thromboxanes play a role in vasoconstriction and platelet aggregation, their dominance can disrupt vascular homeostasis and cause thrombotic vascular events. Furthermore, the importance of thromboxanes and their syntheses in vascular homeostasis is illustrated by findings that patients whose platelets were unresponsive to TXA displayed hemostatic defects and that a deficiency of platelet TXA production led to bleeding disorders. [19]

Furthermore, it has been found that the expression of TXA synthase may be of critical importance to the development and progression of cancer. An overall increase in TXA synthase expression has been observed in a variety of cancers, such as papillary thyroid carcinoma, prostate cancer, and renal cancer. Cancer cells are known for their limitless cellular replicative potential, and it has been hypothesized that changes in eicosanoid profile affect cancer growth. Research has led to the proposal that TXA synthase contributes to a range of tumor survival pathways, including growth, apoptosis inhibition, angiogenesis, and metastasis. [20]


See also

Related Research Articles

<span class="mw-page-title-main">Prostaglandin</span> Group of physiologically active lipid compounds

Prostaglandins (PG) are a group of physiologically active lipid compounds called eicosanoids having diverse hormone-like effects in animals. Prostaglandins have been found in almost every tissue in humans and other animals. They are derived enzymatically from the fatty acid arachidonic acid. Every prostaglandin contains 20 carbon atoms, including a 5-carbon ring. They are a subclass of eicosanoids and of the prostanoid class of fatty acid derivatives.

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

<span class="mw-page-title-main">Prostacyclin</span> Chemical compound

Prostacyclin (also called prostaglandin I2 or PGI2) is a prostaglandin member of the eicosanoid family of lipid molecules. It inhibits platelet activation and is also an effective vasodilator.

<span class="mw-page-title-main">Thromboxane</span> Group of lipids

Thromboxane is a member of the family of lipids known as eicosanoids. The two major thromboxanes are thromboxane A2 and thromboxane B2. The distinguishing feature of thromboxanes is a 6-membered ether-containing ring.

Prostanoids are active lipid mediators that regulate inflammatory response. Prostanoids are a subclass of eicosanoids consisting of the prostaglandins, the thromboxanes, and the prostacyclins. Prostanoids are seen to target NSAIDS which allow for therapeutic potential. Prostanoids are present within areas of the body such as the gastrointestinal tract, urinary tract, respiratory and cardiology systems, reproductive tract and vascular system. Prostanoids can even be seen with aid to the water and ion transportation within cells. Prostanoids help release prostaglandins upon activation, receptors may open possibilities for treatments within different systems.

<span class="mw-page-title-main">Thromboxane receptor</span> Mammalian protein found in Homo sapiens

The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2.

<span class="mw-page-title-main">Cytochrome P450 reductase</span> Mammalian protein found in Homo sapiens

Cytochrome P450 reductase is a membrane-bound enzyme required for electron transfer from NADPH to cytochrome P450 and other heme proteins including heme oxygenase in the endoplasmic reticulum of the eukaryotic cell.

<span class="mw-page-title-main">Prostacyclin synthase</span>

Prostaglandin-I synthase also known as prostaglandin I2 (prostacyclin) synthase (PTGIS) or CYP8A1 is an enzyme involved in prostanoid biosynthesis that in humans is encoded by the PTGIS gene. This enzyme belongs to the family of cytochrome P450 isomerases.

Prostaglandin H<sub>2</sub> Chemical compound

Prostaglandin H2 is a type of prostaglandin and a precursor for many other biologically significant molecules. It is synthesized from arachidonic acid in a reaction catalyzed by a cyclooxygenase enzyme. The conversion from Arachidonic acid to Prostaglandin H2 is a two step process. First, COX-1 catalyzes the addition of two free oxygens to form the 1,2-Dioxane bridge and a peroxide functional group to form Prostaglandin G2. Second, COX-2 reduces the peroxide functional group to a Secondary alcohol, forming Prostaglandin H2. Other peroxidases like Hydroquinone have been observed to reduce PGG2 to PGH2. PGH2 is unstable at room temperature, with a half life of 90-100 seconds, so it is often converted into a different prostaglandin.

<span class="mw-page-title-main">Prostaglandin-endoperoxide synthase 2</span> Human enzyme involved in inflammation

Prostaglandin-endoperoxide synthase 2, also known as cyclooxygenase-2 or COX-2, is an enzyme that in humans is encoded by the PTGS2 gene. In humans it is one of two cyclooxygenases. It is involved in the conversion of arachidonic acid to prostaglandin H2, an important precursor of prostacyclin, which is expressed in inflammation.

<span class="mw-page-title-main">PTGS1</span>

Cyclooxygenase 1 (COX-1), also known as prostaglandin G/H synthase 1, prostaglandin-endoperoxide synthase 1 or prostaglandin H2 synthase 1, is an enzyme that in humans is encoded by the PTGS1 gene. In humans it is one of two cyclooxygenases.

<span class="mw-page-title-main">Prostacyclin receptor</span> Mammalian protein found in Homo sapiens

The Prostacyclin receptor, also termed the prostaglandin I2 receptor or just IP, is a receptor belonging to the prostaglandin (PG) group of receptors. IP binds to and mediates the biological actions of prostacyclin (also termed Prostaglandin I2, PGI2, or when used as a drug, epoprostenol). IP is encoded in humans by the PTGIR gene. While possessing many functions as defined in animal model studies, the major clinical relevancy of IP is as a powerful vasodilator: stimulators of IP are used to treat severe and even life-threatening diseases involving pathological vasoconstriction.

<span class="mw-page-title-main">CYP4A11</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4A11 is a protein that in humans is codified by the CYP4A11 gene.

<span class="mw-page-title-main">CYP4F8</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4F8 is a protein that in humans is encoded by the CYP4F8 gene.

<span class="mw-page-title-main">CYP4A22</span> Protein-coding gene in the species Homo sapiens

CYP4A22 also known as fatty acid omega-hydroxylase is a protein which in humans is encoded by the CYP4A22 gene.

<span class="mw-page-title-main">Oxylipin</span> Class of lipids

Oxylipins constitute a family of oxygenated natural products which are formed from fatty acids by pathways involving at least one step of dioxygen-dependent oxidation. Oxylipins are derived from polyunsaturated fatty acids (PUFAs) by COX enzymes (cyclooxygenases), by LOX enzymes (lipoxygenases), or by cytochrome P450 epoxygenase.

<span class="mw-page-title-main">Proadifen</span> Chemical compound

Proadifen (SKF-525A) is a non-selective inhibitor of cytochrome P450 enzymes, preventing some types of drug metabolism. It is also an inhibitor of neuronal nitric oxide synthase (NOS), CYP-dependent arachidonate metabolism, transmembrane calcium influx, and platelet thromboxane synthesis. Further documented effects include the blockade of ATP-sensitive inward rectifier potassium channel 8 (KIR6.1), and stimulation of endothelial cell prostacyclin production.

<span class="mw-page-title-main">12-Hydroxyheptadecatrienoic acid</span> Chemical compound

12-Hydroxyheptadecatrienoic acid (also termed 12-HHT, 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid, or 12(S)-HHTrE) is a 17 carbon metabolite of the 20 carbon polyunsaturated fatty acid, arachidonic acid. It was discovered and structurally defined in 1973 by P. Wlodawer, Bengt I. Samuelsson, and M. Hamberg, as a product of arachidonic acid metabolism made by microsomes (i.e. endoplasmic reticulum) isolated from sheep seminal vesicle glands and by intact human platelets. 12-HHT is less ambiguously termed 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid to indicate the S stereoisomerism of its 12-hydroxyl residue and the Z, E, and E cis-trans isomerism of its three double bonds. The metabolite was for many years thought to be merely a biologically inactive byproduct of prostaglandin synthesis. More recent studies, however, have attached potentially important activity to it.

<span class="mw-page-title-main">20-Hydroxyeicosatetraenoic acid</span> Chemical compound

20-Hydroxyeicosatetraenoic acid, also known as 20-HETE or 20-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid, is an eicosanoid metabolite of arachidonic acid that has a wide range of effects on the vascular system including the regulation of vascular tone, blood flow to specific organs, sodium and fluid transport in the kidney, and vascular pathway remodeling. These vascular and kidney effects of 20-HETE have been shown to be responsible for regulating blood pressure and blood flow to specific organs in rodents; genetic and preclinical studies suggest that 20-HETE may similarly regulate blood pressure and contribute to the development of stroke and heart attacks. Additionally the loss of its production appears to be one cause of the human neurological disease, Hereditary spastic paraplegia. Preclinical studies also suggest that the overproduction of 20-HETE may contribute to the progression of certain human cancers, particularly those of the breast.

<span class="mw-page-title-main">Furegrelate</span> Chemical compound

Furegrelate, also known as 5-(3-pyridinylmethyl)benzofurancarboxylic acid, is a chemical compound with thromboxane enzyme inhibiting properties that was originally developed by Pharmacia Corporation as a drug to treat arrhythmias, ischaemic heart disorders, and thrombosis but was discontinued. It is commercially available in the form furegrelate sodium salt.


  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000059377 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000029925 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: TBXAS1 thromboxane A synthase 1 (platelet, cytochrome P450, family 5, subfamily A)".
  6. Yokoyama C, Miyata A, Ihara H, Ullrich V, Tanabe T (August 1991). "Molecular cloning of human platelet thromboxane A synthase". Biochemical and Biophysical Research Communications. 178 (3): 1479–1484. doi:10.1016/0006-291X(91)91060-P. PMID   1714723.
  7. Baek SJ, Lee KD, Shen RF (September 1996). "Genomic structure and polymorphism of the human thromboxane synthase-encoding gene". Gene. 173 (2): 251–256. doi:10.1016/0378-1119(95)00881-0. PMID   8964509.
  8. Okuno T, Iizuka Y, Okazaki H, Yokomizo T, Taguchi R, Shimizu T (April 2008). "12(S)-Hydroxyheptadeca-5Z, 8E, 10E-trienoic acid is a natural ligand for leukotriene B4 receptor 2". The Journal of Experimental Medicine. 205 (4): 759–766. doi:10.1084/jem.20072329. PMC   2292216 . PMID   18378794.
  9. Yokomizo T (February 2015). "Two distinct leukotriene B4 receptors, BLT1 and BLT2". Journal of Biochemistry. 157 (2): 65–71. doi:10.1093/jb/mvu078. PMID   25480980.
  10. Ratti S, Quarato P, Casagrande C, Fumagalli R, Corsini A (August 1998). "Picotamide, an antithromboxane agent, inhibits the migration and proliferation of arterial myocytes". European Journal of Pharmacology. 355 (1): 77–83. doi:10.1016/S0014-2999(98)00467-1. PMID   9754941.
  11. Ruan KH, Li P, Kulmacz RJ, Wu KK (August 1994). "Characterization of the structure and membrane interaction of NH2-terminal domain of thromboxane A2 synthase". The Journal of Biological Chemistry. 269 (33): 20938–20942. doi: 10.1016/S0021-9258(17)31912-9 . PMID   8063711.
  12. Ohashi K, Ruan KH, Kulmacz RJ, Wu KK, Wang LH (January 1992). "Primary structure of human thromboxane synthase determined from the cDNA sequence". The Journal of Biological Chemistry. 267 (2): 789–793. doi: 10.1016/S0021-9258(18)48353-6 . PMID   1730669.
  13. 1 2 Wang LH, Kulmacz RJ (August 2002). "Thromboxane synthase: structure and function of protein and gene". Prostaglandins & Other Lipid Mediators. 68–69: 409–422. doi:10.1016/s0090-6980(02)00045-x. PMID   12432933.
  14. Hsu PY, Tsai AL, Wang LH (November 2000). "Identification of thromboxane synthase amino acid residues involved in heme-propionate binding". Archives of Biochemistry and Biophysics. 383 (1): 119–127. doi:10.1006/abbi.2000.2041. PMID   11097184.
  15. Hecker M, Ullrich V (January 1989). "On the mechanism of prostacyclin and thromboxane A2 biosynthesis". The Journal of Biological Chemistry. 264 (1): 141–150. doi: 10.1016/S0021-9258(17)31235-8 . PMID   2491846.
  16. Tanabe T, Ullrich V (October 1995). "Prostacyclin and thromboxane synthases". Journal of Lipid Mediators and Cell Signalling. 12 (2–3): 243–255. doi:10.1016/0929-7855(95)00031-k. PMID   8777569.
  17. Brugger R, Ullrich V (2003). "Prostacyclin and Thromboxane Synthase: New Aspects of Hemethiolate Catalysis". Angewandte Chemie. 33 (19): 1911–1919. doi:10.1002/anie.199419111.
  18. Praticò D, Dogné JM (September 2009). "Vascular biology of eicosanoids and atherogenesis". Expert Review of Cardiovascular Therapy. 7 (9): 1079–1089. doi:10.1586/erc.09.91. PMID   19764861. S2CID   207215183.
  19. Shen RF, Tai HH (1998). "Thromboxanes: synthase and receptors". Journal of Biomedical Science. 5 (3): 153–172. doi:10.1007/bf02253465. PMID   9678486.
  20. Cathcart MC, Reynolds JV, O'Byrne KJ, Pidgeon GP (April 2010). "The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer". Biochimica et Biophysica Acta. 1805 (2): 153–166. doi:10.1016/j.bbcan.2010.01.006. hdl: 2262/36848 . PMID   20122998.

Further reading