Sterol 14-demethylase

Last updated
sterol 14-demethylase
Identifiers
EC no. 1.14.13.70
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a sterol 14-demethylase (EC 1.14.13.70) is an enzyme of the cytochrome P450 (CYP) superfamily. It is any member of the CYP51 family. It catalyzes a chemical reaction such as:

Contents

obtusifoliol + 3 O2 + 3 NADPH + 3 H+ 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol + formate + 3 NADP+ + 4 H2O

The 4 substrates here are obtusifoliol, O2, NADPH, and H+, whereas its 4 products are 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol, formate, NADP+, and H2O.

Ergosterol Ergosterol structure.svg
Ergosterol

Although the lanosterol 14α-demethylase is present in a wide variety of organisms, the enzyme is studied primarily in the context of fungi, where it plays an essential role in mediating membrane permeability. [1] In fungi, CYP51 catalyzes the demethylation of lanosterol to create an important precursor that is eventually converted into ergosterol. [2] This steroid then makes its way throughout the cell, where it alters the permeability and rigidity of plasma membranes much as cholesterol does in animals. [3] Because ergosterol constitutes a fundamental component of fungal membranes, many antifungal medications have been developed to inhibit 14α-demethylase activity and prevent the production of this key compound. [3]

Nomenclature

This enzyme belongs to the family of oxidoreductases, specifically those acting on paired donors, with O2 as oxidant and incorporation or reduction of oxygen. The oxygen incorporated need not be derived from O2 with NADH or NADPH as one donor, and incorporation of one atom o oxygen into the other donor. The systematic name of this enzyme class is sterol,NADPH:oxygen oxidoreductase (14-methyl cleaving). Other names in common use include obtusufoliol 14-demethylase, lanosterol 14-demethylase, lanosterol 14alpha-demethylase, and sterol 14alpha-demethylase. This enzyme participates in biosynthesis of steroids. [2]

These are not the typical CYP subfamilies, but only one subfamily is created for each major taxonomic group. CYP51A for Animals, CYP51B for Bacteria. CYP51C for Chromista, CYP51D for Dictyostelium, CYP51E for Euglenozoa, CYP51F for Fungi. Those groups with only one CYP51 per species are all called by one name: CYP51A1 is for all animal CYP51s since they are orthologous. The same is true for CYP51B, C, D, E and F. CYP51G (green plants) and CYP51Hs (monocots only so far) have individual sequence numbers.

CYP subfamilyetymology kingdom
CYP51AAnimals Metazoa
CYP51BBacteria Bacteria
CYP51CChromista Chromista
CYP51DDictyostelium Amoebozoa
CYP51EEuglenozoa Excavata
CYP51FFungi Fungus
CYP51GGreen plants Archaeplastida
CYP51H monocots in Archaeplastida

Function

The biological role of this protein is also well understood. The demethylated products of the CYP51 reaction are vital intermediates in pathways leading to the formation of cholesterol in humans, ergosterol in fungi, and other types of sterols in plants. [4] These sterols localize to the plasma membrane of cells, where they play an important structural role in the regulation of membrane fluidity and permeability and also influence the activity of enzymes, ion channels, and other cell components that are embedded within. [1] [5] [6] With the proliferation of immuno-suppressive diseases such as HIV/AIDS and cancer, patients have become increasingly vulnerable to opportunistic fungal infections (Richardson et al.). Seeking new means to treat such infections, drug researchers have begun targeting the 14α-demethylase enzyme in fungi; destroying the fungal cell's ability to produce ergosterol causes a disruption of the plasma membrane, thereby resulting in cellular leakage and ultimately the death of the pathogen (DrugBank).

Azoles are currently the most popular class of antifungals used in both agricultural and medical settings. [3] These compounds bind as the sixth ligand to the heme group in CYP51, thereby altering the structure of the active site and acting as noncompetitive inhibitors. [7] The effectiveness of imidazoles and triazoles (common azole subclasses) as inhibitors of 14α-demethylase have been confirmed through several experiments. Some studies test for changes in the production of important downstream ergosterol intermediates in the presence of these compounds. [8] Other studies employ spectrophotometry to quantify azole-CYP51 interactions. [3] Coordination of azoles to the prosthetic heme group in the enzyme's active site causes a characteristic shift in CYP51 absorbance, creating what is commonly referred to as a type II difference spectrum. [9] [10]

Prolonged use of azoles as antifungals has resulted in the emergence of drug resistance among certain fungal strains. [3] Mutations in the coding region of CYP51 genes, overexpression of CYP51, and overexpression of membrane efflux transporters can all lead to resistance to these antifungals. [11] [12] [13] [14] [15] Consequently, the focus of azole research is beginning to shift towards identifying new ways to circumvent this major obstacle. [3]

Structure

As of late 2007, 6 structures have been solved for this class of enzymes, with PDB accession codes 1H5Z, 1U13, 1X8V, 2BZ9, 2CI0, and 2CIB.

Related Research Articles

<span class="mw-page-title-main">Antifungal</span> Pharmaceutical fungicide or fungistatic used to treat and prevent mycosis

An antifungal medication, also known as an antimycotic medication, is a pharmaceutical fungicide or fungistatic used to treat and prevent mycosis such as athlete's foot, ringworm, candidiasis (thrush), serious systemic infections such as cryptococcal meningitis, and others. Such drugs are usually obtained by a doctor's prescription, but a few are available over the counter (OTC). The evolution of antifungal resistance is a growing threat to health globally.

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

<span class="mw-page-title-main">Ketoconazole</span> Antifungal chemical compound

Ketoconazole, sold under the brand name Nizoral among others, is an antiandrogen, antifungal, and antiglucocorticoid medication used to treat a number of fungal infections. Applied to the skin it is used for fungal skin infections such as tinea, cutaneous candidiasis, pityriasis versicolor, dandruff, and seborrheic dermatitis. Taken by mouth it is a less preferred option and only recommended for severe infections when other agents cannot be used. Other uses include treatment of excessive male-patterned hair growth in women and Cushing's syndrome.

<span class="mw-page-title-main">Fluconazole</span> Antifungal medication

Fluconazole is an antifungal medication used for a number of fungal infections. This includes candidiasis, blastomycosis, coccidioidomycosis, cryptococcosis, histoplasmosis, dermatophytosis, and tinea versicolor. It is also used to prevent candidiasis in those who are at high risk such as following organ transplantation, low birth weight babies, and those with low blood neutrophil counts. It is given either by mouth or by injection into a vein.

<span class="mw-page-title-main">Ergosterol</span> Chemical compound

Ergosterol (ergosta-5,7,22-trien-3β-ol) is a mycosterol found in cell membranes of fungi and protozoa, serving many of the same functions that cholesterol serves in animal cells. Because many fungi and protozoa cannot survive without ergosterol, the enzymes that synthesize it have become important targets for drug discovery. In human nutrition, ergosterol is a provitamin form of vitamin D2; exposure to ultraviolet (UV) light causes a chemical reaction that produces vitamin D2.

<span class="mw-page-title-main">Miconazole</span> Chemical compound

Miconazole, sold under the brand name Monistat among others, is an antifungal medication used to treat ring worm, pityriasis versicolor, and yeast infections of the skin or vagina. It is used for ring worm of the body, groin, and feet. It is applied to the skin or vagina as a cream or ointment.

<span class="mw-page-title-main">Terconazole</span> Chemical compound

Terconazole is an antifungal drug used to treat vaginal yeast infection. It comes as a lotion or a suppository and disrupts the biosynthesis of fats in a yeast cell. It has a relatively broad spectrum compared to azole compounds but not triazole compounds. Testing shows that it is a suitable compound for prophylaxis for those that suffer from chronic vulvovaginal candidiasis.

Any enzyme system that includes cytochrome P450 protein or domain can be called a P450-containing system.

<span class="mw-page-title-main">Posaconazole</span> Pharmaceutical drug

Posaconazole, sold under the brand name Noxafil among others, is a triazole antifungal medication.

<span class="mw-page-title-main">Lanosterol 14 alpha-demethylase</span> Protein-coding gene in the species Homo sapiens

Lanosterol 14α-demethylase (CYP51A1) is the animal version of a cytochrome P450 enzyme that is involved in the conversion of lanosterol to 4,4-dimethylcholesta-8(9),14,24-trien-3β-ol. The cytochrome P450 isoenzymes are a conserved group of proteins that serve as key players in the metabolism of organic substances and the biosynthesis of important steroids, lipids, and vitamins in eukaryotes. As a member of this family, lanosterol 14α-demethylase is responsible for an essential step in the biosynthesis of sterols. In particular, this protein catalyzes the removal of the C-14α-methyl group from lanosterol. This demethylation step is regarded as the initial checkpoint in the transformation of lanosterol to other sterols that are widely used within the cell.

<span class="mw-page-title-main">PGRMC1</span> Protein-coding gene in the species Homo sapiens

Progesterone receptor membrane component 1 is a protein which co-purifies with progesterone binding proteins in the liver and ovary. In humans, the PGRMC1 protein is encoded by the PGRMC1 gene.

<span class="mw-page-title-main">Clotrimazole</span> Chemical compound

Clotrimazole, sold under the brand name Lotrimin, among others, is an antifungal medication. It is used to treat vaginal yeast infections, oral thrush, diaper rash, tinea versicolor, and types of ringworm including athlete's foot and jock itch. It can be taken by mouth or applied as a cream to the skin or in the vagina.

<span class="mw-page-title-main">C-5 sterol desaturase</span> Class of enzymes

C-5 sterol desaturase is an enzyme that is highly conserved among eukaryotes and catalyzes the dehydrogenation of a C-5(6) bond in a sterol intermediate compound as a step in the biosynthesis of major sterols. The precise structure of the enzyme's substrate varies by species. For example, the human C-5 sterol desaturase oxidizes lathosterol, while its ortholog ERG3 in the yeast Saccharomyces cerevisiae oxidizes episterol.

<span class="mw-page-title-main">Prochloraz</span> Chemical compound

Prochloraz, brand name Sportak, is an imidazole fungicide that was introduced in 1978 and is widely used in Europe, Australia, Asia, and South America within gardening and agriculture to control the growth of fungi. It is not registered for use in the United States. Similarly to other azole fungicides, prochloraz is an inhibitor of the enzyme lanosterol 14α-demethylase (CYP51A1), which is necessary for the production of ergosterol – an essential component of the fungal cell membrane – from lanosterol. The agent is a broad-spectrum, protective and curative fungicide, effective against Alternaria spp., Botrytis spp., Erysiphe spp., Helminthosporium spp., Fusarium spp., Pseudocerosporella spp., Pyrenophora spp., Rhynchosporium spp., and Septoria spp.

ERG11 or Sterol 14-demethylase is a fungal cytochrome P450 enzyme originally from Saccharomyces cerevisiae, belongs to family CYP51, with the CYP Symbol CYP51F1. ERG11 catalyzes the C14-demethylation of lanosterol to 4,4'-dimethyl cholesta-8,14,24-triene-3-beta-ol which is the first step of biosynthesis of the zymosterol, zymosterol will be further converted into Ergosterol.

<span class="mw-page-title-main">Dihydrolanosterol</span> Chemical compound

Dihydrolanosterol, or 24,25-Dihydrolanosterol, also called Lanostenol, is a sterol and the C24-25 hydrogenated products of lanosterol, dihydrolanosterol can be demethylated by mammal or yeast cytochrome P450 sterol 14alpha-demethylase.

<span class="mw-page-title-main">Eburicol</span> Chemical compound

Eburicol, or Obtusifoldienol, also called 24-Methylene-24,25-dihydrolanosterol, is a natural, fungus sterol, which can be demethylated by yeast cytochrome P450 sterol 14alpha-demethylase ERG11.

ERG5 or Sterol 22-desaturase is a cytochrome P450 enzyme in the ergosterol biosynthesis pathway of fungi Saccharomyces cerevisiae, with the CYP Symbol CYP61A1. CYP61A1 is one of only three P450 enzyme found in baker's yeast, the other two are CYP51F1 and CYP56A1. The ortholog in Schizosaccharomyces pombe, was named CYP61A3 for historical reasons, and is only one of two P450 enzyme found with CYP51F1. ERG5 catalyzes the C22-C23 double bond formation on the sterol side chain of ergostatrienol to convert it into ergostatetraenol, then the C24 double bond of ergostatetrenol will be hydrogenation reduced into ergosterol by ERG4.

<span class="mw-page-title-main">29-Norlanosterol</span> Chemical compound

29-Norlanosterol, or 4-demethyllanosterol, also called 4α,14α-dimethylzymosterol, is a Metabolic intermediate of plant sterol biosynthesis. In the pathway, it is transformed from ring-opening reactions of Norcycloartenol and then demethylation by CYP51 into 4α-methyl-5α-cholesta-8,14,24-trien-3β-ol.

Topical antifungaldrugs are used to treat fungal infections on the skin, scalp, nails, vagina or inside the mouth. These medications come as creams, gels, lotions, ointments, powders, shampoos, tinctures and sprays. Most antifungal drugs induce fungal cell death by destroying the cell wall of the fungus. These drugs inhibit the production of ergosterol, which is a fundamental component of the fungal cell membrane and wall.

References

  1. 1 2 Daum G, Lees ND, Bard M, Dickson R (December 1998). "Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae". Yeast. 14 (16): 1471–510. doi:10.1002/(SICI)1097-0061(199812)14:16<1471::AID-YEA353>3.0.CO;2-Y. PMID   9885152.
  2. 1 2 Lepesheva GI, Waterman MR (March 2007). "Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms". Biochimica et Biophysica Acta (BBA) - General Subjects. 1770 (3): 467–77. doi:10.1016/j.bbagen.2006.07.018. PMC   2324071 . PMID   16963187.
  3. 1 2 3 4 5 6 Becher R, Wirsel SG (August 2012). "Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens". Applied Microbiology and Biotechnology. 95 (4): 825–40. doi:10.1007/s00253-012-4195-9. PMID   22684327. S2CID   17688962.
  4. Lepesheva GI, Waterman MR (January 2011). "Structural basis for conservation in the CYP51 family". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1814 (1): 88–93. doi:10.1016/j.bbapap.2010.06.006. PMC   2962772 . PMID   20547249.
  5. Abe F, Usui K, Hiraki T (September 2009). "Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae". Biochemistry. 48 (36): 8494–504. doi:10.1021/bi900578y. PMID   19670905.
  6. "Itraconazole (DB01167)". DrugBank.
  7. Mullins JG, Parker JE, Cools HJ, Togawa RC, Lucas JA, Fraaije BA, Kelly DE, Kelly SL (2011). "Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola". PLOS ONE. 6 (6): e20973. Bibcode:2011PLoSO...620973M. doi: 10.1371/journal.pone.0020973 . PMC   3124474 . PMID   21738598.
  8. Tuck SF, Patel H, Safi E, Robinson CH (June 1991). "Lanosterol 14 alpha-demethylase (P45014DM): effects of P45014DM inhibitors on sterol biosynthesis downstream of lanosterol". Journal of Lipid Research. 32 (6): 893–902. doi: 10.1016/S0022-2275(20)41987-X . PMID   1940622.
  9. Vanden Bossche H, Marichal P, Gorrens J, Bellens D, Verhoeven H, Coene MC, Lauwers W, Janssen PA (1987). "Interaction of azole derivatives with cytochrome P-450 isozymes in yeast, fungi, plants and mammalian cells". Pesticide Science. 21 (4): 289–306. doi:10.1002/ps.2780210406.
  10. Yoshida Y, Aoyama Y (January 1987). "Interaction of azole antifungal agents with cytochrome P-45014DM purified from Saccharomyces cerevisiae microsomes". Biochemical Pharmacology. 36 (2): 229–35. doi:10.1016/0006-2952(87)90694-0. PMID   3545213.
  11. Vanden Bossche H, Dromer F, Improvisi I, Lozano-Chiu M, Rex JH, Sanglard D (1998). "Antifungal drug resistance in pathogenic fungi". Medical Mycology. 36 Suppl 1: 119–28. PMID   9988500.
  12. Leroux P, Albertini C, Gautier A, Gredt M, Walker AS (July 2007). "Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola". Pest Management Science. 63 (7): 688–98. doi:10.1002/ps.1390. PMID   17511023.
  13. Sanglard D, Ischer F, Koymans L, Bille J (February 1998). "Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents". Antimicrobial Agents and Chemotherapy. 42 (2): 241–53. doi:10.1128/AAC.42.2.241. PMC   105395 . PMID   9527767.
  14. Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC (April 2009). "Efflux-mediated antifungal drug resistance". Clinical Microbiology Reviews. 22 (2): 291–321, Table of Contents. doi:10.1128/CMR.00051-08. PMC   2668233 . PMID   19366916.
  15. Nash A, Rhodes J (2018). "Simulations of CYP51A from Aspergillus fumigatus in a model bilayer provide insights into triazole drug resistance". Medical Mycology. 56 (3): 361–373. doi: 10.1093/mmy/myx056 . PMC   5895076 . PMID   28992260.

Further reading