Prostaglandin EP2 receptor

Last updated
PTGER2
Identifiers
Aliases PTGER2 , EP2, Prostaglandin E2 receptor, prostaglandin E receptor 2
External IDs OMIM: 176804 MGI: 97794 HomoloGene: 739 GeneCards: PTGER2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000956

NM_008964

RefSeq (protein)

NP_000947

NP_032990

Location (UCSC) Chr 14: 52.31 – 52.33 Mb Chr 14: 45.23 – 45.24 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Prostaglandin E2 receptor 2, also known as EP2, is a prostaglandin receptor for prostaglandin E2 (PGE2) encoded by the human gene PTGER2: it is one of four identified EP receptors, the others being EP1, EP3, and EP4, which bind with and mediate cellular responses to PGE2 and also, but with lesser affinity and responsiveness, certain other prostanoids (see Prostaglandin receptors). [5] EP has been implicated in various physiological and pathological responses. [6]

Contents

Gene

The PTGER2 gene is located on human chromosome 14 at position p22.1 (i.e. 14q22.1), contains 2 introns and 3 exons, and codes for a G protein coupled receptor (GPCR) of the rhodopsin-like receptor family, Subfamily A14 (see rhodopsin-like receptors#Subfamily A14). [7]

Expression

EP2 is widely distributed in humans. Its protein is expressed in human small intestine, lung, media of arteries and arterioles of the kidney, thymus, uterus, brain cerebral cortex, brain striatum, brain hippocampus, corneal epithelium, corneal choriocapillaries, Myometriuml cells, eosinophiles, sclera of the eye, articular cartilage, the corpus cavernosum of the penis, and airway smooth muscle cells; its mRNA is expressed in gingival fibroblasts, monocyte-derived dendritic cells, aorta, corpus cavernosum of the penis, articular cartilage, airway smooth muscle, and airway epithelial cells. In rats, the receptor protein and/or mRNA has been found in lung, spleen, intestine, skin, kidney, liver, long bones, and rather extensively throughout the brain and other parts of the central nervous system. [8] [9]

EP2 expression in fibroblasts from the lungs of mice with bleomycin-induced pulmonary fibrosis and humans with Idiopathic pulmonary fibrosis is greatly reduced. In both instances, this reduced expression was associated with hypermethylation of CpG dinucleotide sites located in the first 420 base pairs upstream of the PTGER2 gene transcription start site of these fibroblasts. This suggests that EP2 expression is regulated by this methylation. [10]

Ligands

Activating ligands

The following standard prostaglandins have the following relative efficacies in binding to and activating EP2: PGE2>PGF2alpha>=PGI2>PGD2. [8] The receptor binding affinity Dissociation constant Kd (i.e. ligand concentration needed to bind with 50% of available EP1 receptors) is ~13 nM for PGE2 and ~10 nM for PGE1 with the human receptor and ~12 nM for PGE2 with the mouse receptor. [11] [12] Because PGE2 activates multiple prostanoid receptors and has a short half-life in vivo due to its rapidly metabolism in cells by omega oxidation and beta oxidation, metabolically resistant EP2-selective activators are useful for the study of this receptor's function and could be clinically useful for the treatment of certain diseases. There are several such agonists including butaprost free acid and ONO-AE1-259-01 which have Ki inhibitory binding values (see Biochemistry#Receptor/ligand binding affinity) of 32 and 1.8 NM, respectively, and therefore are respectively ~2.5-fold less and 7-fold more potent than PGE2. [12]

Inhibiting ligands

PF-04418948 (Ki=16 nM), TG4-155 (Ki=9.9 nM), TG8-4, and TG6-129 are selective competitive antagonists for EP2 that have been used for studies in animal models of human diseases. Many of the earlier EP2 receptor antagonists used for such studies exhibited poor receptor selectivity, inhibiting, for example, other EP receptors. [12]

Mechanism of cell activation

EP2 is classified as a relaxant type of prostanoid receptor based on its ability, upon activation, to relax certain types of smooth muscle (see Prostaglandin receptors). When initially bound to PGE2 or any other of its agonists, it mobilizes G proteins containing the Gs alpha subunit (i.e. Gαs)-G beta-gamma complexes (i.e. Gβγ). The Gαs- Gβγ complexes dissociate into their Gαs and Gβγ subunits which in turn regulate cell signaling pathways. In particular, Gαs stimulates adenylyl cyclase to raise cellular levels of cAMP thereby activating PKA; PKA activates various types of signaling molecules such as the transcription factor CREB which lead to different types of functional responses depending on cell type. [6] [13] EP2 also activates the a) GSK-3 pathway which regulates cell migratory responses and innate immune responses including pro-inflammatory cytokine and interleukin production and b) Beta-catenin pathway which regulates not only cell–cell adhesion but also activates the Wnt signaling pathway which, in turn, stimulates the transcription of genes responsible for regulating cell migration and proliferation. [6] In many of these respects, EP2 actions resemble those of another type of relaxant prostanoid receptor, EP4 but differs from the contractile prostanoid receptors, EP1 and EP3 receptors which mobilize G proteins containing the q-Gβγ complex. EP2 also differs from all the other prostaglandin receptors in that it fails to undergo homologous desensitization. That is, following agonist-induced activation, the other prostaglandin (as well as most types of G protein coupled receptors) quickly become desensitized, often internalized, and whether or not internalized, incapable of activating their G protein targets. This effect limits the duration and extent to which agonists can stimulate cells. EP2, by failing to become desensitized, is able to function over prolong periods and later time points than other prostaglandin receptors and therefore potentially able to contribute to more delayed and chronic phases of cellular and tissue responses. [10]

Functions

Studies using animals genetically engineered to lack EP2 and supplemented by studies examining the actions of EP2 receptor antagonists and agonists in animals as well as animal and human tissues indicate that this receptor serves various functions.

Eye

When applied topically into the eyes of rodents, cats, rhesus monkeys, and humans PGE2 acts, apparently acting at least in part through EP2, decreases intraocular pressure by stimulating increases in the drainage of aqueous humor through the uveoskceral pathway, the principal aqueous humor outflow pathway in the eye. [14]

Reproduction

Female mice engineered to lack a functional Pgter2 gene show a modest reduction in ovulation and more severely impaired capacity for Fertilisation. Studies suggest that this impaired fertilization reflects the loss of EP2 functions in stimulating cumulus cells clusters which surround oocytes to: a) form the CCL7 chemokine which serves as a chemoattractant that guides sperm cells to oocytes and b) disassemble the extracellular matrix which in turn allows sperm cells to penetrate to the oocyte. These data allow that an EP2 receptor antagonist may be a suitable candidate as a contraceptive for women. [15]

Inflammation and allergy

Activation of EP2 contributes to regulating B cell immunoglobulin class switching, maturation of T lymphocyte CD4−CD8− cells to CD4+CD8+ cells, and the function of Antigen-presenting cells, particularly Dendritic cells. EP thereby contributes to the development of inflammation in rodent models of certain types of experimentally-induced joint and paw inflammation and the neurotoxic effects of endotoxin. However, EP2 activation also has anti-inflammatory actions on pro-inflammatory cells (e.g. neutrophils, monocytes, macrophages, dendritic cells, NK cells, TH1 cells, TH2 cells, and fibroblasts in various tissues and on microglia cells in the central nervous system). These actions suppress certain forms of inflammation such NMDA receptor-related neurotoxicity and the rodent model of Bleomycin-induced pulmonary fibrosis. [6] [16] EP2 activation also inhibits the phagocytosis and killing of pathogens by alveolar macrophages; these effects may serve an anti-inflammatory role but reduce host defense against these pathogens. [10]

Activation of EP2 also influences allergic inflammatory reactions. It dilates airways (bronchodilation) contracted by the allergic mediator, histamine; inhibits Immunoglobulin E-activated mast cells from releasing histamine and leukotrienes (viz., LTC4, LTD4, and LTE4), all of which have bronchoconstricting and otherwise pro-allergic actions; inhibits pro-allergic eosinophil apoptosis, chemotaxis, and release of pro-allergic granule contents; and reduces release of the pro-allergic cytokines Interleukin 5, Interleukin 4, and interleukin 13 from human blood mononuclear cells. [17] [18]

Cardiovascular

EP2 receptor-deficient mice develop mild systolic and/or systemic hypertension which is worsened by high dietary intake of salt. These effects are thought to be due to the loss of EP2's vasodilation effects and/or ability to increase the urinary excretion of salt. [6] [19] [20]

Bone

EP2-deficient mice exhibit impaired generation of osteoclasts (cells that break down bone tissue) due to a loss in the capacity of osteoblastic cells to stimulate osteoclast formation. These mice have weakened bones compared with the wild type animals. When administered locally or systemically to animals, EP2-selective agonists stimulate the local or systemic formation of bone, augment bone mass, and accelerate the healing of fractures and other bone defects in animal models. [21]

Nervous system

EP2 deficient mice exhibit reduced Oxidative stress and beta amyloid formation. Activation of this receptor also has neuroprotective effects in models of Alzheimer's disease, Amyotrophic lateral sclerosis, multiple sclerosis, and stroke while its inhibition reduces Epileptic seizure. EP2 signaling can also increase stroke injury via neurons in a mice model according to a PNAS paper. [22] EP2 receptors on either nerve or Neuroglia cells of the peripheral and central nervous system act to promote pain perception, which are caused by inflammation, muscle stretch, temperature, and physical stimuli (see allodynia) in mice. [9] [16] A 2021 study found that inhibition of myeloid cell EP2 signalling can reverse or prevent an inflammation element of brain-ageing in mice. [23] [24]

Malignancy

The EP2 receptor can act as a tumor promoter. EP2 gene knockout mice have less lung, breast, skin, and colon cancers following exposure to carcinogens. Knockout of this gene in mice with the adenomatous polyposis coli mutation also causes a decrease in the size and number of pre-cancerous intestinal polyps that the animals develop. These effects are commonly ascribed to the loss of EP2-mediated: Vascular endothelial growth factor production and thereby of tumor vascularization; regulation of endothelial cell motility and survival; interference with transforming growth factor-β's anti-cell proliferation activity; and, more recently, regulation of host anti-tumor immune responses. [25]

Clinical significance

Therapeutics

Preclinical studies, as outlined above, indicate that EP2 may be a target for treating and/or preventing particular human disorders involving: allergic diseases such as asthma and rhinitis, particularly aspirin-exacerbated respiratory disease (AERD); [17] glaucoma; [14] various diseases of the nervous system; [9] fractures, osteoporosis, and other bone abnormalities; [21] pulmonary fibrosis; [16] certain forms of malignant disease such as colon cancer including those that arise from Adenomatous polyposis coli mutations; [25] and salt-sensitive forms of hypertension; [20] This receptor has also been suggested to be a target for contraception. [15] To date, however, there has been little translational research to determine the possible beneficial effects of EP2 antagonists or agonists in humans. The following drugs that act on EP2 but also other prostaglandin receptors are in clinical use:

The following drugs are in development or proposed to be candidates for development as highly selective EP2 agonists for the indicated conditions: [12]

Genomic studies

The single-nucleotide polymorphism (SNP) variant rs17197 [26] in the 3' untranslated region of PTGER2 has been associated with an increased incidence of essential hypertension in a population of Japanese men. SNP variant rs1254598 [27] in a Spanish population; SNP variant uS5 located in a STAT-binding consensus sequence of the regulatory region of PTGER2 with reduced transcription activity in a Japanese population; and two PTGER2 SNP variants (-616C>G and -166G>A) in a Korean population have been associated with an increased incidence of Aspirin-induced asthma. [28]

See also

Related Research Articles

<span class="mw-page-title-main">Prostaglandin</span> Group of physiologically active lipid compounds

Prostaglandins (PG) are a group of physiologically active lipid compounds called eicosanoids having diverse hormone-like effects in animals. Prostaglandins have been found in almost every tissue in humans and other animals. They are derived enzymatically from the fatty acid arachidonic acid. Every prostaglandin contains 20 carbon atoms, including a 5-carbon ring. They are a subclass of eicosanoids and of the prostanoid class of fatty acid derivatives.

<span class="mw-page-title-main">Eicosanoid</span> Class of compounds

Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the proximity of their cells of origin. Eicosanoids may also act as endocrine agents to control the function of distant cells.

<span class="mw-page-title-main">Ductus arteriosus</span> Blood vessel connecting the pulmonary artery to the proximal descending aorta

The ductus arteriosus, also called the ductus Botalli, named after the Italian physiologist Leonardo Botallo, is a blood vessel in the developing fetus connecting the trunk of the pulmonary artery to the proximal descending aorta. It allows most of the blood from the right ventricle to bypass the fetus's fluid-filled non-functioning lungs. Upon closure at birth, it becomes the ligamentum arteriosum.

Prostaglandin E<sub>2</sub> Chemical compound

Prostaglandin E2 (PGE2), also known as dinoprostone, is a naturally occurring prostaglandin with oxytocic properties that is used as a medication. Dinoprostone is used in labor induction, bleeding after delivery, termination of pregnancy, and in newborn babies to keep the ductus arteriosus open. In babies it is used in those with congenital heart defects until surgery can be carried out. It is also used to manage gestational trophoblastic disease. It may be used within the vagina or by injection into a vein.

<span class="mw-page-title-main">Enprostil</span> Chemical compound

Enprostil is a synthetic prostaglandin designed to resemble dinoprostone. Enprostil was found to be a highly potent inhibitor of gastric HCl secretion. It is an analog of prostaglandin E2 but unlike this prostaglandin, which binds to and activates all four cellular receptors viz., EP1, EP2, EP3, and EP4 receptors, enprostil is a more selective receptor agonist in that it binds to and activates primarily the EP3 receptor. Consequently, enprostil is expected to have a narrower range of actions that may avoid some of the unwanted side-effects and toxicities of prostaglandin E2. A prospective multicenter randomized controlled trial conducted in Japan found combining enprostil with cimetidine was more effective than cimetidine alone in treating gastric ulcer.

<span class="mw-page-title-main">Thromboxane receptor</span> Mammalian protein found in Homo sapiens

The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2.

<span class="mw-page-title-main">Alveolar macrophage</span>

An alveolar macrophage, pulmonary macrophage, is a type of macrophage, a professional phagocyte, found in the airways and at the level of the alveoli in the lungs, but separated from their walls.

Most of the eicosanoid receptors are integral membrane protein G protein-coupled receptors (GPCRs) that bind and respond to eicosanoid signaling molecules. Eicosanoids are rapidly metabolized to inactive products and therefore are short-lived. Accordingly, the eicosanoid-receptor interaction is typically limited to a local interaction: cells, upon stimulation, metabolize arachidonic acid to an eicosanoid which then binds cognate receptors on either its parent cell or on nearby cells to trigger functional responses within a restricted tissue area, e.g. an inflammatory response to an invading pathogen. In some cases, however, the synthesized eicosanoid travels through the blood to trigger systemic or coordinated tissue responses, e.g. prostaglandin (PG) E2 released locally travels to the hypothalamus to trigger a febrile reaction. An example of a non-GPCR receptor that binds many eicosanoids is the PPAR-γ nuclear receptor.

Prostaglandin receptors or prostanoid receptors represent a sub-class of cell surface membrane receptors that are regarded as the primary receptors for one or more of the classical, naturally occurring prostanoids viz., prostaglandin D2,, PGE2, PGF2alpha, prostacyclin (PGI2), thromboxane A2 (TXA2), and PGH2. They are named based on the prostanoid to which they preferentially bind and respond, e.g. the receptor responsive to PGI2 at lower concentrations than any other prostanoid is named the Prostacyclin receptor (IP). One exception to this rule is the receptor for thromboxane A2 (TP) which binds and responds to PGH2 and TXA2 equally well.

Prostaglandin DP<sub>1</sub> receptor Protein-coding gene in the species Homo sapiens

The Prostaglandin D2 receptor 1 (DP1), a G protein-coupled receptor encoded by the PTGDR1 gene (also termed PTGDR), is primarily a receptor for prostaglandin D2 (PGD2). The receptor is a member of the Prostaglandin receptors belonging to the Subfamily A14 of rhodopsin-like receptors. Activation of DP1 by PGD2 or other cognate receptor ligands is associated with a variety of physiological and pathological responses in animal models.

Prostaglandin EP<sub>4</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin E2 receptor 4 (EP4) is a prostaglandin receptor for prostaglandin E2 (PGE2) encoded by the PTGER4 gene in humans; it is one of four identified EP receptors, the others being EP1, EP2, and EP3, all of which bind with and mediate cellular responses to PGE2 and also, but generally with lesser affinity and responsiveness, certain other prostanoids (see Prostaglandin receptors). EP4 has been implicated in various physiological and pathological responses in animal models and humans.

Prostaglandin DP<sub>2</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human protein encoded by the PTGDR2 gene and GPR44. DP2 has also been designated as CD294 (cluster of differentiation 294). It is a member of the class of prostaglandin receptors which bind with and respond to various prostaglandins. DP2 along with Prostaglandin DP1 receptor are receptors for prostaglandin D2 (PGD2). Activation of DP2 by PGD2 or other cognate receptor ligands has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.

Prostaglandin EP<sub>1</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin E2 receptor 1 (EP1) is a 42kDa prostaglandin receptor encoded by the PTGER1 gene. EP1 is one of four identified EP receptors, EP1, EP2, EP3, and EP4 which bind with and mediate cellular responses principally to prostaglandin E2) (PGE2) and also but generally with lesser affinity and responsiveness to certain other prostanoids (see Prostaglandin receptors). Animal model studies have implicated EP1 in various physiological and pathological responses. However, key differences in the distribution of EP1 between these test animals and humans as well as other complicating issues make it difficult to establish the function(s) of this receptor in human health and disease.

Prostaglandin EP<sub>3</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin EP3 receptor (53kDa), also known as EP3, is a prostaglandin receptor for prostaglandin E2 (PGE2) encoded by the human gene PTGER3; it is one of four identified EP receptors, the others being EP1, EP2, and EP4, all of which bind with and mediate cellular responses to PGE2 and also, but generally with lesser affinity and responsiveness, certain other prostanoids (see Prostaglandin receptors). EP has been implicated in various physiological and pathological responses.

<span class="mw-page-title-main">Prostaglandin F receptor</span> Protein-coding gene in the species Homo sapiens

Prostaglandin F receptor (FP) is a receptor belonging to the prostaglandin (PG) group of receptors. FP binds to and mediates the biological actions of Prostaglandin F (PGF). It is encoded in humans by the PTGFR gene.

<span class="mw-page-title-main">Prostacyclin receptor</span> Mammalian protein found in Homo sapiens

The Prostacyclin receptor, also termed the prostaglandin I2 receptor or just IP, is a receptor belonging to the prostaglandin (PG) group of receptors. IP binds to and mediates the biological actions of prostacyclin (also termed Prostaglandin I2, PGI2, or when used as a drug, epoprostenol). IP is encoded in humans by the PTGIR gene. While possessing many functions as defined in animal model studies, the major clinical relevancy of IP is as a powerful vasodilator: stimulators of IP are used to treat severe and even life-threatening diseases involving pathological vasoconstriction.

<span class="mw-page-title-main">Sulprostone</span> Chemical compound

Sulprostone is an analogue of prostaglandin E2 (PGE2) that has oxytocic activity in assays of rat kidney cells and tissues. There are four known receptors which mediate various but often different cellular and tissue responses to PGE2: prostaglandin EP1 receptor, prostaglandin EP2 receptor, prostaglandin EP3 receptor, and prostaglandin EP4 receptor. Sulprosotone binds to and activates the prostaglandin EP3 receptor with far greater efficacy than the other PGE2 receptors and also has the advantage of being relatively resistant, compared with PGE2, to becoming metabolically degraded. It is listed as a comparatively weak receptor agonist of the prostaglandin EP1 receptor. In all events, this as well as other potent synthetic EP3 receptor antagonists have the realized or potential ability to promote the beneficial effects of prostaglandin EP3 receptor activation.

The prostaglandin D2 (PGD2) receptors are G protein-coupled receptors that bind and are activated by prostaglandin D2. Also known as PTGDR or DP receptors, they are important for various functions of the nervous system and inflammation. They include the following proteins:

The prostaglandin E2 (PGE2) receptors are G protein-coupled receptors that bind and are activated by prostaglandin E2. They are members of the prostaglandin receptors class of receptors and include the following Protein isoforms:

<span class="mw-page-title-main">Grapiprant</span> Chemical compound

Grapiprant is a small molecule drug that belongs in the piprant class. This analgesic and anti-inflammatory drug is primarily used as a pain relief for mild to moderate inflammation related to osteoarthritis in dogs. Grapiprant has been approved by the FDA's Center for Veterinary Medicine and was categorized as a non-cyclooxygenase inhibiting non-steroidal anti-inflammatory drug (NSAID) in March 2016.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000125384 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000037759 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "PTGER2 prostaglandin e receptor 2 [Homo sapiens (human)] - Gene - NCBI".
  6. 1 2 3 4 5 Woodward DF, Jones RL, Narumiya S (September 2011). "International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress". Pharmacological Reviews. 63 (3): 471–538. doi: 10.1124/pr.110.003517 . PMID   21752876.
  7. "PTGER2 prostaglandin E receptor 2 (human)". Entrez Gene. National Center for Biotechnology Information, U.S. National Library of Medicine.
  8. 1 2 "EP2 receptor". IUPHAR/BPS Guide to Pharmacology.
  9. 1 2 3 Yagami T, Koma H, Yamamoto Y (2016). "Pathophysiological Roles of Cyclooxygenases and Prostaglandins in the Central Nervous System". Molecular Neurobiology. 53 (7): 4754–71. doi:10.1007/s12035-015-9355-3. PMID   26328537. S2CID   11624385.
  10. 1 2 3 Kalinski P (2012). "Regulation of immune responses by prostaglandin E2". Journal of Immunology. 188 (1): 21–8. doi:10.4049/jimmunol.1101029. PMC   3249979 . PMID   22187483.
  11. Narumiya S, Sugimoto Y, Ushikubi F (October 1999). "Prostanoid receptors: structures, properties, and functions". Physiological Reviews. 79 (4): 1193–226. doi:10.1152/physrev.1999.79.4.1193. PMID   10508233. S2CID   7766467.
  12. 1 2 3 4 Markovič T, Jakopin Ž, Dolenc MS, Mlinarič-Raščan I (January 2017). "Structural features of subtype-selective EP receptor modulators". Drug Discovery Today. 22 (1): 57–71. doi: 10.1016/j.drudis.2016.08.003 . PMID   27506873.
  13. Moreno JJ (2017). "Eicosanoid receptors: Targets for the treatment of disrupted intestinal epithelial homeostasis". European Journal of Pharmacology. 796: 7–19. doi:10.1016/j.ejphar.2016.12.004. PMID   27940058. S2CID   1513449.
  14. 1 2 Doucette LP, Walter MA (2016). "Prostaglandins in the eye: Function, expression, and roles in glaucoma". Ophthalmic Genetics. 38 (2): 1–9. doi:10.3109/13816810.2016.1164193. PMID   27070211. S2CID   2395560.
  15. 1 2 Sugimoto Y, Inazumi T, Tsuchiya S (2015). "Roles of prostaglandin receptors in female reproduction". Journal of Biochemistry. 157 (2): 73–80. doi: 10.1093/jb/mvu081 . PMID   25480981.
  16. 1 2 3 Matsuoka T, Narumiya S (September 2007). "Prostaglandin receptor signaling in disease". TheScientificWorldJournal. 7: 1329–47. doi: 10.1100/tsw.2007.182 . PMC   5901339 . PMID   17767353.
  17. 1 2 Machado-Carvalho L, Roca-Ferrer J, Picado C (August 2014). "Prostaglandin E2 receptors in asthma and in chronic rhinosinusitis/nasal polyps with and without aspirin hypersensitivity". Respiratory Research. 15 (1): 100. doi: 10.1186/s12931-014-0100-7 . PMC   4243732 . PMID   25155136.
  18. Torres R, Picado C, de Mora F (January 2015). "The PGE2-EP2-mast cell axis: an antiasthma mechanism". Molecular Immunology. 63 (1): 61–8. doi:10.1016/j.molimm.2014.03.007. PMID   24768319.
  19. Yang G, Chen L (2016). "An Update of Microsomal Prostaglandin E Synthase-1 and PGE2 Receptors in Cardiovascular Health and Diseases". Oxidative Medicine and Cellular Longevity. 2016: 5249086. doi: 10.1155/2016/5249086 . PMC   4993943 . PMID   27594972.
  20. 1 2 Yang T, Du Y (2012). "Distinct roles of central and peripheral prostaglandin E2 and EP subtypes in blood pressure regulation". American Journal of Hypertension. 25 (10): 1042–9. doi:10.1038/ajh.2012.67. PMC   3578476 . PMID   22695507.
  21. 1 2 Li M, Thompson DD, Paralkar VM (2007). "Prostaglandin E(2) receptors in bone formation". International Orthopaedics. 31 (6): 767–72. doi:10.1007/s00264-007-0406-x. PMC   2266676 . PMID   17593365.
  22. Liu Q, Liang X, Wang Q, et al. (May 2019). "PGE2 signaling via the neuronal EP2 receptor increases injury in a model of cerebral ischemia". Proc Natl Acad Sci USA. 116 (20): 10019–10024. Bibcode:2019PNAS..11610019L. doi: 10.1073/pnas.1818544116 . PMC   6525498 . PMID   31036664.
  23. "Study reveals immune driver of brain aging". medicalxpress.com. Retrieved 13 February 2021.
  24. Minhas PS, Latif-Hernandez A, McReynolds MR, Durairaj AS, Wang Q, Rubin A, et al. (February 2021). "Restoring metabolism of myeloid cells reverses cognitive decline in ageing". Nature. 590 (7844): 122–128. Bibcode:2021Natur.590..122M. doi:10.1038/s41586-020-03160-0. PMC   8274816 . PMID   33473210.
  25. 1 2 O'Callaghan G, Houston A (November 2015). "Prostaglandin E2 and the EP receptors in malignancy: possible therapeutic targets?". British Journal of Pharmacology. 172 (22): 5239–50. doi:10.1111/bph.13331. PMC   5341220 . PMID   26377664.
  26. "Rs17197 RefSNP Report - DBSNP - NCBI".
  27. "Rs1254598 RefSNP Report - DBSNP - NCBI".
  28. Cornejo-García JA, Perkins JR, Jurado-Escobar R, García-Martín E, Agúndez JA, Viguera E, Pérez-Sánchez N, Blanca-López N (2016). "Pharmacogenomics of Prostaglandin and Leukotriene Receptors". Frontiers in Pharmacology. 7: 316. doi: 10.3389/fphar.2016.00316 . PMC   5030812 . PMID   27708579.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.