Neuropeptide S receptor

Last updated

NPSR1
Identifiers
Aliases NPSR1 , ASRT2, GPR154, GPRA, NPSR, PGR14, VRR1, neuropeptide S receptor 1
External IDs OMIM: 608595; MGI: 2441738; HomoloGene: 45515; GeneCards: NPSR1; OMA:NPSR1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_207173
NM_001300933
NM_001300934
NM_001300935
NM_207172

Contents

NM_175678

RefSeq (protein)

NP_001287862
NP_001287863
NP_001287864
NP_997055
NP_997056

NP_783609

Location (UCSC) Chr 7: 34.66 – 34.88 Mb Chr 9: 24.01 – 24.23 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The neuropeptide S receptor (NPSR) is a member of the G-protein coupled receptor superfamily of integral membrane proteins [5] which binds neuropeptide S (NPS). [6] It was formerly an orphan receptor, GPR154, until the discovery of neuropeptide S as the endogenous ligand. Increased expression of this gene in ciliated cells of the respiratory epithelium and in bronchial smooth muscle cells is associated with asthma. This gene is a member of the G protein-coupled receptor 1 family and encodes a plasma membrane protein. Mutations in this gene have also been associated with this disease. [7]

Clinical significance

In the CNS, activation of the NPSR by NPS promotes arousal and anxiolytic-like effects. [8] [9]

In addition, mututations in NPSR have been linked to a susceptibility to asthma (rs3249801, A107I). [10] Hence NPSR has also been called GPRA (G protein-coupled receptor for asthma susceptibility). Activation of NPSR in the airway epithelium has a number of effects including upregulation of matrix metalloproteinases which are involved in the pathogenesis of asthma. [11] It has been shown that activation of NPSR by NPS affects both gastrointestinal motility and mucosal permeability simultaneously. Aberrant signaling and upregulation of NPSR1 could potentially exacerbate dysmotility and hyperpermeability by local mechanisms in gastrointestinal functional and inflammatory reactions. [12]

The very rare NPSR mutation Y206H, which makes the receptor more sensitive to NPS, may cause familial natural short sleep. [13] This finding has not been investigated in animal models, and is sufficiently rare that a biobank study was unable to find other carriers to attempt a replication of the association with sleep duration. [14]

Related Research Articles

Histamine H<sub>2</sub> receptor Mammalian protein found in Homo sapiens

H2 receptors are a type of histamine receptor found in many parts of the anatomy of humans and other animals. They are positively coupled to adenylate cyclase via Gs alpha subunit. It is a potent stimulant of cAMP production, which leads to activation of protein kinase A. PKA functions to phosphorylate certain proteins, affecting their activity. The drug betazole is an example of a histamine H2 receptor agonist.

<span class="mw-page-title-main">Tachykinin peptides</span>

Tachykinin peptides are one of the largest families of neuropeptides, found from amphibians to mammals. They were so named due to their ability to rapidly induce contraction of gut tissue. The tachykinin family is characterized by a common C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is either an Aromatic or an Aliphatic amino acid. The genes that produce tachykinins encode precursor proteins called preprotachykinins, which are chopped apart into smaller peptides by posttranslational proteolytic processing. The genes also code for multiple splice forms that are made up of different sets of peptides.

Prostaglandin DP<sub>1</sub> receptor Protein-coding gene in the species Homo sapiens

The prostaglandin D2 receptor 1 (DP1), a G protein-coupled receptor encoded by the PTGDR1 gene (also termed PTGDR), is primarily a receptor for prostaglandin D2 (PGD2). The receptor is a member of the prostaglandin receptors belonging to the subfamily A14 of rhodopsin-like receptors. Activation of DP1 by PGD2 or other cognate receptor ligands is associated with a variety of physiological and pathological responses in animal models.

<span class="mw-page-title-main">KiSS1-derived peptide receptor</span> Mammalian protein found in Homo sapiens

The KiSS1-derived peptide receptor is a G protein-coupled receptor which binds the peptide hormone kisspeptin (metastin). Kisspeptin is encoded by the metastasis suppressor gene KISS1, which is expressed in a variety of endocrine and gonadal tissues. Activation of the kisspeptin receptor is linked to the phospholipase C and inositol trisphosphate second messenger cascades inside the cell.

GPCR neuropeptide receptors are G-protein coupled receptors which bind various neuropeptides. Members include:

<span class="mw-page-title-main">Prolactin-releasing peptide receptor</span> Protein-coding gene in the species Homo sapiens

The prolactin-releasing peptide receptor (PrRPR) also known as G-protein coupled receptor 10 (GPR10) is a protein that in humans is encoded by the PRLHR gene.

<span class="mw-page-title-main">GPR35</span> G protein-coupled receptor

G protein-coupled receptor 35 also known as GPR35 is a G protein-coupled receptor which in humans is encoded by the GPR35 gene. Heightened expression of GPR35 is found in immune and gastrointestinal tissues, including the crypts of Lieberkühn.

<span class="mw-page-title-main">Protease-activated receptor 2</span> Protein-coding gene in the species Homo sapiens

Protease activated receptor 2 (PAR2) also known as coagulation factor II (thrombin) receptor-like 1 (F2RL1) or G-protein coupled receptor 11 (GPR11) is a protein that in humans is encoded by the F2RL1 gene. PAR2 modulates inflammatory responses, obesity, metabolism, cancers and acts as a sensor for proteolytic enzymes generated during infection. In humans, we can find PAR2 in the stratum granulosum layer of epidermal keratinocytes. Functional PAR2 is also expressed by several immune cells such as eosinophils, neutrophils, monocytes, macrophages, dendritic cells, mast cells and T cells.

<span class="mw-page-title-main">Neuropeptides B/W receptor 1</span> Protein-coding gene in the species Homo sapiens

Neuropeptides B/W receptor 1, also known as NPBW1 and GPR7, is a human protein encoded by the NPBWR1 gene. As implied by its name, it and related gene NPBW2 are transmembranes protein that bind Neuropeptide B (NPB) and Neuropeptide W (NPW), both proteins expressed strongly in parts of the brain that regulate stress and fear including the extended amygdala and stria terminalis. When originally discovered in 1995, these receptors had no known ligands and were called GPR7 and GPR8, but at least three groups in the early 2000s independently identified their endogenous ligands, triggering the name change in 2005.

<span class="mw-page-title-main">Neuropeptides B/W receptor 2</span> Protein-coding gene in the species Homo sapiens

Neuropeptides B/W receptor 2, also known as NPBW2, is a human protein encoded by the NPBWR2 gene.

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 3</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 3 (HCA3), also known as niacin receptor 2 (NIACR2) and GPR109B, is a protein which in humans is encoded by the HCAR3 gene. HCA3, like the other hydroxycarboxylic acid receptors HCA1 and HCA2, is a Gi/o-coupled G protein-coupled receptor (GPCR). The primary endogenous agonists of HCA3 are 3-hydroxyoctanoic acid and kynurenic acid. HCA3 is also a low-affinity biomolecular target for niacin (aka nicotinic acid).

<span class="mw-page-title-main">LPAR6</span> Protein-coding gene in the species Homo sapiens

Lysophosphatidic acid receptor 6, also known as LPA6, P2RY5 and GPR87, is a protein that in humans is encoded by the LPAR6 gene. LPA6 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">Cysteinyl leukotriene receptor 1</span> Protein-coding gene in humans

Cysteinyl leukotriene receptor 1, also termed CYSLTR1, is a receptor for cysteinyl leukotrienes (LT). CYSLTR1, by binding these cysteinyl LTs contributes to mediating various allergic and hypersensitivity reactions in humans as well as models of the reactions in other animals.

<span class="mw-page-title-main">Neuropeptide FF receptor 2</span> Protein-coding gene in the species Homo sapiens

Neuropeptide FF receptor 2, also known as NPFF2 is a human protein encoded by the NPFFR2 gene.

<span class="mw-page-title-main">Latrophilin 3</span> Protein-coding gene in the species Homo sapiens

Latrophilin 3 is a protein that in humans is encoded by the ADGRL3 gene.

<span class="mw-page-title-main">TAAR6</span> Protein and coding gene in humans

Trace amine associated receptor 6, also known as TAAR6, is a protein which in humans is encoded by the TAAR6 gene.

<span class="mw-page-title-main">NPW</span> Protein-coding gene in the species Homo sapiens

NPW is a gene that in humans encodes Neuropeptide W protein.

<span class="mw-page-title-main">Neuropeptide S</span> Protein-coding gene in the species Homo sapiens

Neuropeptide S (NPS) is a neuropeptide found in human and mammalian brain, mainly produced by neurons in the amygdala and between Barrington's nucleus and the locus coeruleus, although NPS-responsive neurons extend projections into many other brain areas. NPS binds specifically to a G protein-coupled receptor, NPSR. Animal studies show that NPS suppresses anxiety and appetite, induces wakefulness and hyperactivity, including hyper-sexuality, and plays a significant role in the extinction of conditioned fear. It has also been shown to significantly enhance dopamine activity in the mesolimbic pathway, and inhibits motility and increases permeability in neurocrine fashion acting through NO in the myenteric plexus in rats and humans.

The prostaglandin D2 (PGD2) receptors are G protein-coupled receptors that bind and are activated by prostaglandin D2. Also known as PTGDR or DP receptors, they are important for various functions of the nervous system and inflammation. They include the following proteins:

<span class="mw-page-title-main">Cadherin related family member 3</span> Protein found in humans

Cadherin related family member 3 (CDHR3), also known as CDH28 or its abbreviation CDHR3, is a protein that in humans is encoded by the CDHR3 gene. The protein is predominately expressed in respiratory epithelium and the first notion of its clinical implications was from the discovery that genetic variation of CDHR3 is strongly associated to early severe asthma exacerbations in children. Subsequent studies have suggested that CDHR3 is a receptor for a subtype of rhinovirus.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000187258 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000043659 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, et al. (Apr 2003). "The G protein-coupled receptor repertoires of human and mouse". Proceedings of the National Academy of Sciences of the United States of America. 100 (8): 4903–8. Bibcode:2003PNAS..100.4903V. doi: 10.1073/pnas.0230374100 . PMC   153653 . PMID   12679517.
  6. Vendelin J, Pulkkinen V, Rehn M, Pirskanen A, Räisänen-Sokolowski A, Laitinen A, et al. (Sep 2005). "Characterization of GPRA, a novel G protein-coupled receptor related to asthma". American Journal of Respiratory Cell and Molecular Biology. 33 (3): 262–70. doi:10.1165/rcmb.2004-0405OC. PMID   15947423.
  7. "Entrez Gene: NPSR1 neuropeptide S receptor 1".
  8. Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, et al. (Aug 2004). "Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects". Neuron. 43 (4): 487–97. doi: 10.1016/j.neuron.2004.08.005 . PMID   15312648. S2CID   15601843.
  9. Okamura N, Reinscheid RK (Aug 2007). "Neuropeptide S: a novel modulator of stress and arousal". Stress. 10 (3): 221–6. doi:10.1080/10253890701248673. PMID   17613937. S2CID   39068808.
  10. Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V, Salmikangas P, et al. (Apr 2004). "Characterization of a common susceptibility locus for asthma-related traits". Science. 304 (5668): 300–4. Bibcode:2004Sci...304..300L. doi:10.1126/science.1090010. PMID   15073379. S2CID   9149671.
  11. Vendelin J, Bruce S, Holopainen P, Pulkkinen V, Rytilä P, Pirskanen A, et al. (Oct 2006). "Downstream target genes of the neuropeptide S-NPSR1 pathway". Human Molecular Genetics. 15 (19): 2923–35. doi: 10.1093/hmg/ddl234 . PMID   16926187.
  12. Wan Saudi WS, Halim MA, Rudholm-Feldreich T, Gillberg L, Rosenqvist E, Tengholm A, et al. (Oct 2015). "Neuropeptide S inhibits gastrointestinal motility and increases mucosal permeability through nitric oxide". Am J Physiol Gastrointest Liver Physiol. 309 (9): G625-34. doi: 10.1152/ajpgi.00104.2015 . PMID   26206857.
  13. Xing L, Shi G, Mostovoy Y, Gentry NW, Fan Z, McMahon TB, et al. (October 2019). "Mutant neuropeptide S receptor reduces sleep duration with preserved memory consolidation". Science Translational Medicine. 11 (514): eaax2014. doi:10.1126/scitranslmed.aax2014. PMC   7587149 . PMID   31619542. S2CID   204756335.
  14. Weedon MN, Jones SE, Lane JM, Lee J, Ollila HM, Dawes A, et al. (September 2022). "The impact of Mendelian sleep and circadian genetic variants in a population setting". PLoS Genetics. 18 (9): e1010356. doi: 10.1371/journal.pgen.1010356 . PMC   9499244 . PMID   36137075.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.