GPR75 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | GPR75 , GPRchr2, WI31133, G protein-coupled receptor 75 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 606704; MGI: 2441843; HomoloGene: 4945; GeneCards: GPR75; OMA:GPR75 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Probable G-protein coupled receptor 75 is a protein that in humans is encoded by the GPR75 gene. [5] [6]
GPR75 is a member of the G protein-coupled receptor family. GPRs are cell surface receptors that activate guanine-nucleotide binding proteins upon the binding of a ligand. [6]
GPR75 is currently classified as an orphan GPCR and several studies are underway to identify its ligand. In one study, the chemokine CCL5 (RANTES) has been shown to stimulate calcium mobilization and inositol triphosphate formation in GPR75-transfected cells. [7]
A 2021 study reported that people with protein-truncating variants of GPR75 were associated with 5.3kg lower body weight and 54% lower odds for obesity. GPR75 knock-out mice showed resistance to weight gain under high-fat diet. [8]
Chemokine ligand 5 is a protein which in humans is encoded by the CCL5 gene. The gene has been discovered in 1990 by in situ hybridisation and it is localised on 17q11.2-q12 chromosome.
The prostaglandin D2 receptor 1 (DP1), a G protein-coupled receptor encoded by the PTGDR1 gene (also termed PTGDR), is primarily a receptor for prostaglandin D2 (PGD2). The receptor is a member of the prostaglandin receptors belonging to the subfamily A14 of rhodopsin-like receptors. Activation of DP1 by PGD2 or other cognate receptor ligands is associated with a variety of physiological and pathological responses in animal models.
The Gs alpha subunit is a subunit of the heterotrimeric G protein Gs that stimulates the cAMP-dependent pathway by activating adenylyl cyclase. Gsα is a GTPase that functions as a cellular signaling protein. Gsα is the founding member of one of the four families of heterotrimeric G proteins, defined by the alpha subunits they contain: the Gαs family, Gαi/Gαo family, Gαq family, and Gα12/Gα13 family. The Gs-family has only two members: the other member is Golf, named for its predominant expression in the olfactory system. In humans, Gsα is encoded by the GNAS complex locus, while Golfα is encoded by the GNAL gene.
Fms-related tyrosine kinase 3 ligand (FLT3LG) is a protein which in humans is encoded by the FLT3LG gene.
The bombesin receptor subtype 3 also known as BRS-3 or BB3 is a protein which in humans is encoded by the BRS3 gene.
The KiSS1-derived peptide receptor is a G protein-coupled receptor which binds the peptide hormone kisspeptin (metastin). Kisspeptin is encoded by the metastasis suppressor gene KISS1, which is expressed in a variety of endocrine and gonadal tissues. Activation of the kisspeptin receptor is linked to the phospholipase C and inositol trisphosphate second messenger cascades inside the cell.
Neuropeptides B/W receptor 1, also known as NPBW1 and GPR7, is a human protein encoded by the NPBWR1 gene. As implied by its name, it and related gene NPBW2 are transmembranes protein that bind Neuropeptide B (NPB) and Neuropeptide W (NPW), both proteins expressed strongly in parts of the brain that regulate stress and fear including the extended amygdala and stria terminalis. When originally discovered in 1995, these receptors had no known ligands and were called GPR7 and GPR8, but at least three groups in the early 2000s independently identified their endogenous ligands, triggering the name change in 2005.
Probable G-protein coupled receptor 12 is a protein that in humans is encoded by the GPR12 gene.
G-protein coupled receptor 31 also known as 12-(S)-HETE receptor is a protein that in humans is encoded by the GPR31 gene. The human gene is located on chromosome 6q27 and encodes a G-protein coupled receptor protein composed of 319 amino acids.
Putative G-protein coupled receptor 42 is a protein that in humans is encoded by the GPR42 gene. The human GPR gene is located at the same site as the human FFAR1, FFAR, and FFAR3 genes, i.e., on the long arm of chromosome 19 at position 23.33. This gene appears to be a segmental duplication of the FFAR3 gene. The human GPR42 gene codes for several proteins with a FFAR3-like structure but their expression in various cell types and tissues as well as their activities and functions have not yet been clearly defined in any scientific publication followed by PubMed as of 2023.
Probable G-protein coupled receptor 52 is a protein that in humans is encoded by the GPR52 gene.
Neuropeptide FF receptor 2, also known as NPFF2 is a human protein encoded by the NPFFR2 gene.
Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human protein encoded by the PTGDR2 gene and GPR44. DP2 has also been designated as CD294 (cluster of differentiation 294). It is a member of the class of prostaglandin receptors which bind with and respond to various prostaglandins. DP2 along with Prostaglandin DP1 receptor are receptors for prostaglandin D2 (PGD2). Activation of DP2 by PGD2 or other cognate receptor ligands has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.
OXGR1, i.e., 2-oxoglutarate receptor 1 is a G protein-coupled receptor located on the surface membranes of certain cells. It functions by binding one of its ligands and thereby becoming active in triggering pre-programmed responses in its parent cells. OXGR1 has been shown to be activated by α-ketoglutarate, itaconate, and three cysteinyl-containing leukotrienes, leukotriene E4, LTC4, and LTD4. α-Ketoglutarate and itaconate are the dianionic forms of α-ketoglutaric acid and itaconic acid, respectively. α-Ketoglutaric and itaconic acids are short-chain dicarboxylic acids that have two carboxyl groups both of which are bound to hydrogen. However, at the basic pH levels in virtually all animal tissues, α-ketoglutaric acid and itaconic acid exit almost exclusively as α-ketoglutarate and itaconate, i.e., with their carboxy residues being negatively charged, because they are not bound to H+. It is α-ketoglutarate and itaconate, not α-ketoglutaric or itaconic acids, which activate OXGR1.
Relaxin/insulin-like family peptide receptor 1, also known as RXFP1, is a human G protein coupled receptor that is one of the relaxin receptors. It is a rhodopsin-like GPCR which is unusual in this class as it contains a large extracellular binding and signalling domain. Some reports suggest that RXFP1 forms homodimers, however the most recent evidence indicates that relaxin binds a non-homodimer of RXFP1.
G protein-coupled receptor 119 also known as GPR119 is a G protein-coupled receptor that in humans is encoded by the GPR119 gene.
GPR156, is a human gene which encodes a G protein-coupled receptor belonging to metabotropic glutamate receptor subfamily. By sequence homology, this gene was proposed as being a possible GABAB receptor subunit, however when expressed in cells alone or with other GABAB subunits, no response to GABAB ligands could be detected. In vitro studies on GPR156 constitutive activity revealed a high level of basal activation and coupling with members of the Gi/Go heterotrimeric G protein family. In 2021, an article was reported that GPR156 modulates hair cell orientation in the cochlea. Also, it was proposed that GPR156 is related to congenital hearing loss. GPR156 in complex with any of the Gi/o heterotrimers regulates the hair cell orientation. In 2024, molecular structures of G-free and Go-bound GPR156 were characterized by using cryogenic electron microscopy.
G-protein coupled receptor 3 is a protein that in humans is encoded by the GPR3 gene. The protein encoded by this gene is a member of the G protein-coupled receptor family of transmembrane receptors and is involved in signal transduction.
Relaxin/insulin-like family peptide receptor 2, also known as RXFP2, is a human G-protein coupled receptor.
Leucine-rich repeat-containing G-protein coupled receptor 6 is a protein that in humans is encoded by the LGR6 gene. Along with the other G-protein coupled receptors LGR4 and LGR5, LGR6 is a Wnt signaling pathway mediator. LGR6 also acts as an epithelial stem cell marker in squamous cell carcinoma in mice in vivo.