Formyl peptide receptor 1 (FPR1, FPR1 receptor, fMet-Leu-Phe receptor 1, FMLP receptor 1, or N-formylmethionyl-leucyl-phenylalanine receptor 1) is a cell surface receptor protein that in humans is encoded by the formyl peptide receptor 1 (FPR1) gene. This gene encodes a G protein-coupled receptor cell surface protein that binds and is activated by N-Formylmethionine-containing oligopeptides, particularly N-Formylmethionine-leucyl-phenylalanine (FMLP). FPR1 is prominently expressed by mammalian phagocytic and blood leukocyte cells where it functions to mediate these cells' responses to the N-formylmethionine-containing oligopeptides which are released by invading microorganisms and injured tissues. FPR1 directs these cells to sites of invading pathogens or disrupted tissues and then stimulates these cells to kill the pathogens or to remove tissue debris; as such, it is an important component of the innate immune system that operates in host defense and damage control. [5]
Humans also express two paralogs of FPR1 vis., FPR2 and FPR3. Mice express no fewer than 7 Fpr receptors and encoding genes that are homologous to FPR1 although no single one of these FPRs appears to perform exactly the same functions as any one of the human FPRs. [6]
FPR1 binds with and is activated by:
Studies conducted in the 1970s found that a series of N-formylmethionine-containing oligopeptides, including the most potent and best known member of this series, N-Formylmethionine-leucyl-phenylalanine (FMLP or fMet-Leu-Phe), stimulated rabbit and human neutrophils by an apparent receptor-dependent mechanism to migrate in a directional pattern in classical laboratory assays of chemotaxis. Since these oligopeptides were produced by bacteria or synthetic analogs of such products, it was suggested that the N-formyl oligopeptides are important chemotatic factors and their receptors are important chemotactic factor receptors that act respectively as signaling and signal-recognizing elements to initiate Inflammation responses in order to defend against bacterial invasion. Further studies cloned a receptor for these N-formyl oligopeptides, FPR1. Two receptors where thereafter discovered and named FPR2 and FPR3 based on the similarity of their genes' predicted amino acid sequence to that of FPR1 rather than on any ability to bind or be activated by the formyl oligopeptides. The latter two receptors were subsequently found to have very different specificities for the formyl oligopeptides and very different functions than those for FPR1. FPR1 is the premiere receptor for the pro-inflammatory actions of formyl peptides. [5] [8] [9]
Confusingly, there are two nomenclatures for FPR receptors and their genes, the first one used, FPR, FPR1, and FPR2, and its replacement (which corresponds directly to these three respective receptors and their genes), FPR1, FPR2, and FPR3. The latter nomenclature was recommended by the International Union of Basic and Clinical Pharmacology [7] and is used here. Other previously used names for FPR1 are NFPR, and FMLPR; for FPR2 are FPRH1, FPRL1, RFP, LXA4R, ALXR, FPR2/ALX, HM63, FMLPX, FPR2A, and ALX/FPR2 (most recently, ALX/FPR2 is commonly used for FPR2); and for FPR3 are FPRH2, FPRL2, and FMLPY. [7]
In early studies, cultured human HL-60 promyelocytes purposely differentiated to granulocytes were used to partially purify [10] and in a series of experiments clone FPR1; [11] [12] [13] [14] [15] an apparent homolog of FPR1, Fpr was also cloned from rabbit neutrophils. [16] The studies indicated that FPR1 is a G protein-coupled receptor that activates cells though a linkage to the pertussis toxin-sensitive Gαi subclass of G proteins, that FPR1 is located on chromosome 19q.13.3, and that this gene consists of two exons, the first of which encodes a 66 base pair 5'-untranslated sequence, the second of which has an intronless open reading frame coding for a protein containing ~354 amino acids; the studies also indicated that cells express multiple formyl peptide receptor mRNA transcripts due to Allelic heterogeneity, alternate Polyadenylation sites, and possibly products of other genes with homology to FPR1. Subsequent studies cloned two other genes with homology to FPR1 viz., FPL2 (originally termed FPR1, FPRH1, or FPRL1) and FPR3 (originally termed FPR2, FPRH2, or FPRL2). [17] [18] [19] FPR2 and FPR3 are composed of 351 and 352 amino acids, respectively, and similar to FPR1 have intronless open reading frames which encode G protein coupled receptors; FPR1 and FPR2 have 66% and 56% amino acid sequence identity with FPR1 and 72% homology to each other. [7] All three genes localize to chromosome 19q.13.3 in the order of FPR1, FPR2, and FPR3 to form a cluster which also includes the gene for another G protein-coupled chemotactic factor receptor, the C5a receptor (also termed CD88), which binds and is activated by complement component 5a (C5a) and GPR77, a second C5a anaphylatoxin chemotactic receptor C5a2 (C5L2), a second C5a receptor of debated function which has the structure of a G protein coupled receptor but fails to couple to G proteins. [20] These points are of interest because C5a is generated by the interaction of bacteria with blood plasma components to activate the complement cascade which then cleave C5a from Complement component 5. Thus, bacteria produce a family of oligopeptide chemotactic factors plus activate host complement pathways to generate C5a, which, like the formylated oligopeptides, is a neutrophil chemotactic factor that operates through receptors whose genes cluster with those for the three formyl peptide receptors. [21] Furthermore, bacteria-induced complement activation also causes the formation of complement component 3a (C3a) by cleavage from complement component 3; C3a is a neutrophil chemotactic factor which operates through a G protein coupled chemotactic factor receptor, the C3a receptor, whose gene is located at chromosome 12p13; C3a also acts through C5L2. [20] [22]
Mouse formyl peptide receptor genes localize to chromosome 17A3.2 in the following order: Fpr1, Fpr-rs2 (or fpr2), Fpr-rs1 (or Lxa4R), Fpr-rs4, Fpr-rs7, Fpr-rs6, and Fpr-rs3; Pseudogenes ψFpr-rs2 and ψFpr-rs3 (or ψFpr-rs5) lie just after Fpr-rs2 and Fpr-rs1, respectively. All of the active mouse FPR receptors have ≥50% amino acid sequence identity with each other as well as with the three human FPR receptors. [6] Studies find that: a) mouse Fpr1 is an ortholog of human FPR1, responding to many bacterial- and mitochondrial-derived formyl peptides but only minimally to FMLP and having certain pharmacologic properties in common with human FPR2/ALX; b) mouse Fpr2 and mFpr-rs1 bind with high affinity and respond to lipoxins but have little affinity for or responsiveness to formyl peptides and therefore share key properties with human FPR2/ALX; and c) based on its predominantly intracellular distribution, mFpr-rs1 correlates, and therefore may share functionally, with human FPR3; [23] [24] [25]
The ψFpr-rs2 gene contains a deletion and frame shift which renders its protein 186 nucleotides shorter but 98% identical to the protein encoded by its closest paralog gene, Fpr-rs2. Since ψFpr-rs2 transcripts are expressed and inducible in multiple mouse tissues and since gene knockout studies ascribe functionality to it, ψFpr-rs2 may not a true pseudogene and, it is suggested, should be renamed Fpr-rs8. [26]
Fpr-rs1, Fpr-rs3, Fpr-rs4, Fpr-rs6, and Fpr-rs7 receptors are expressed in the olfactory bulb sensory neurons of the Vomeronasal organ where they have been shown to respond to their known ligands, FMLP and lipoxin A4. Isolated mouse Olfactory bulb neurons also respond to a range of other fpr agonists. These results suggest that the cited receptors function to allow the olfactory-based detection of various contaminated compounds such as spoiled food and/or their many inflammation-regulating and other agonists in bodily secretions. [27]
The large number of mouse compared to human FPR receptors makes it difficult to extrapolate human FPR1 functions based on genetic (e.g. gene knockout or forced overexpression) or other experimental manipulations of FPR receptors in mice. In any event, targeted disruption of the Fpr1 gene reduced the ability of mice to survive intravenous injection of the bacterial pathogen, listeria monocytogenes ; [28] disruption of the Fpr2 gene in mice produce a similar effect while disruption of both genes further lowered the survival of mice to the listeria challenge. [29] The effect of these gene knockouts appeared due to faulty leukocyte function and other causes leading to a breakdown in the innate immune response. The functions of the human FPR1 receptor may be equivalent to the overlapping functions of the mouse Fpr1 and Fpr2 functions and therefore be critical in the defense against at least certain bacteria. Targeted disruption of FPR-rs1 produced a 33% reduction in the lifetime of mice; there was no specific pathology associated with this reduction. [26]
FPR receptors are widely distributed throughout mammalian species with the FPR1, FPR2, and FPR3 paralogs, based on phylogenetic analysis, originating from a common ancestor, early duplication of FPR1, and FPR2/FPR3 splitting with FPR3 originating from the latest duplication event near the origin of primates. [30] Rabbits express an ortholog of FPR1 (78% amino acid sequence identity) with high binding affinity for FMLP; rats express an ortholog of FPR2 (74% amino acid sequence identity) with high affinity for lipoxin A4. [6]
FPR1 is widely expressed by circulating blood neutrophils, eosinophils, basophils, monocytes, and platelets; tissue-bound macrophages, fibroblasts, and immature dendritic cells; vascular endothelial and smooth muscle cells; various types of epithelial cells, liver hepatocytes, neural tissue glial cells, astrocytes and malignant neuroblastoma cells; skin keratinocytes; and virtually all types of multicellular tissues. [6] [31] [32] [33]
Chemotaxis is the movement of an organism or entity in response to a chemical stimulus. Somatic cells, bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food by swimming toward the highest concentration of food molecules, or to flee from poisons. In multicellular organisms, chemotaxis is critical to early development and development as well as in normal function and health. In addition, it has been recognized that mechanisms that allow chemotaxis in animals can be subverted during cancer metastasis. The aberrant chemotaxis of leukocytes and lymphocytes also contribute to inflammatory diseases such as atherosclerosis, asthma, and arthritis. Sub-cellular components, such as the polarity patch generated by mating yeast, may also display chemotactic behavior.
A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. They are categorized as nonclassic eicosanoids and members of the specialized pro-resolving mediators (SPMs) family of polyunsaturated fatty acid (PUFA) metabolites. Like other SPMs, LXs form during, and then act to resolve, inflammatory responses. Initially, two lipoxins were identified, lipoxin A4 (LXA4) and LXB4, but more recent studies have identified epimers of these two LXs: the epi-lipoxins, 15-epi-LXA4 and 15-epi-LXB4 respectively.
For the ICAO airport code see Candle Lake Airpark, for the diradical compound see Dichlorocarbene.
N-Formylmethionine is a derivative of the amino acid methionine in which a formyl group has been added to the amino group. It is specifically used for initiation of protein synthesis from bacterial and organellar genes, and may be removed post-translationally.
Chemokine ligand 7 (CCL7) is a small cytokine that was previously called monocyte-chemotactic protein 3 (MCP3). CCL7 is a small protein that belongs to the CC chemokine family and is most closely related to CCL2.
The chemokine ligand 1 (CXCL1) is a small peptide belonging to the CXC chemokine family that acts as a chemoattractant for several immune cells, especially neutrophils or other non-hematopoietic cells to the site of injury or infection and plays an important role in regulation of immune and inflammatory responses. It was previously called GRO1 oncogene, GROα, neutrophil-activating protein 3 (NAP-3) and melanoma growth stimulating activity, alpha (MGSA-α). CXCL1 was first cloned from a cDNA library of genes induced by platelet-derived growth factor (PDGF) stimulation of BALB/c-3T3 murine embryonic fibroblasts and named "KC" for its location in the nitrocellulose colony hybridization assay. This designation is sometimes erroneously believed to be an acronym and defined as "keratinocytes-derived chemokine". Rat CXCL1 was first reported when NRK-52E cells were stimulated with interleukin-1β (IL-1β) and lipopolysaccharide (LPS) to generate a cytokine that was chemotactic for rat neutrophils, cytokine-induced neutrophil chemoattractant (CINC). In humans, this protein is encoded by the gene Cxcl1 and is located on human chromosome 4 among genes for other CXC chemokines.
C-X-C motif chemokine 5 is a protein that in humans is encoded by the CXCL5 gene.
The formyl peptide receptors (FPR) belong to a class of G protein-coupled receptors involved in chemotaxis. In humans, there are three formyl peptide receptor isoforms, each encoded by a separate gene that are named FPR1, FPR2, and FPR3. These receptors were originally identified by their ability to bind N-formyl peptides such as N-formylmethionine produced by the degradation of either bacterial or host cells. Hence formyl peptide receptors are involved in mediating immune cell response to infection. These receptors may also act to suppress the immune system under certain conditions. The close phylogenetic relation of signaling in chemotaxis and olfaction was recently proved by detection formyl peptide receptor like proteins as a distinct family of vomeronasal organ chemosensors in mice.
The C5a receptor also known as complement component 5a receptor 1 (C5AR1) or CD88 is a G protein-coupled receptor for C5a. It functions as a complement receptor. C5a receptor modulates inflammatory responses, obesity, development and cancers.
Interleukin 8 receptor, beta is a chemokine receptor. IL8RB is also known as CXCR2, and CXCR2 is now the IUPHAR Committee on Receptor Nomenclature and Drug classification-recommended name.
C-C chemokine receptor type 1 is a protein that in humans is encoded by the CCR1 gene.
N-formyl peptide receptor 2 (FPR2) is a G-protein coupled receptor (GPCR) located on the surface of many cell types of various animal species. The human receptor protein is encoded by the FPR2 gene and is activated to regulate cell function by binding any one of a wide variety of ligands including not only certain N-Formylmethionine-containing oligopeptides such as N-Formylmethionine-leucyl-phenylalanine (FMLP) but also the polyunsaturated fatty acid metabolite of arachidonic acid, lipoxin A4 (LXA4). Because of its interaction with lipoxin A4, FPR2 is also commonly named the ALX/FPR2 or just ALX receptor.
N-Formylmethionyl-leucyl-phenylalanine is an N-formylated tripeptide and sometimes simply referred to as chemotactic peptide is a potent polymorphonuclear leukocyte (PMN) chemotactic factor and is also a macrophage activator.
Serum amyloid A1 (SAA1) is a protein that in humans is encoded by the SAA1 gene. SAA1 is a major acute-phase protein mainly produced by hepatocytes in response to infection, tissue injury and malignancy. When released into blood circulation, SAA1 is present as an apolipoprotein associated with high-density lipoprotein (HDL). SAA1 is a major precursor of amyloid A (AA), the deposit of which leads to inflammatory amyloidosis.
Chemokine like receptor 1 also known as ChemR23 is a protein that in humans is encoded by the CMKLR1 gene. Chemokine receptor-like 1 is a G protein-coupled receptor for the chemoattractant adipokine chemerin and the omega-3 fatty acid eicosapentaenoic acid-derived specialized pro-resolving molecule, resolvin E1. The murine receptor that shares almost 80% homology with the human receptor, is called Dez.
N-formyl peptide receptor 3 (FPR3) is a receptor protein that in humans is encoded by the FPR3 gene.
G protein-coupled receptor 32, also known as GPR32 or the RvD1 receptor, is a human receptor (biochemistry) belonging to the rhodopsin-like subfamily of G protein-coupled receptors.
Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human protein encoded by the PTGDR2 gene and GPR44. DP2 has also been designated as CD294 (cluster of differentiation 294). It is a member of the class of prostaglandin receptors which bind with and respond to various prostaglandins. DP2 along with Prostaglandin DP1 receptor are receptors for prostaglandin D2 (PGD2). Activation of DP2 by PGD2 or other cognate receptor ligands has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.
'Staphylococcus aureus delta toxin is a toxin produced by Staphylococcus aureus. It has a wide spectrum of cytolytic activity.
Heme binding protein 1 is a protein that in humans is encoded by the HEBP1 gene.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.