GPR98

Last updated
ADGRV1
Identifiers
Aliases ADGRV1 , FEB4, MASS1, USH2B, USH2C, VLGR1, VLGR1b, GPR98, adhesion G protein-coupled receptor V1
External IDs OMIM: 602851 MGI: 1274784 HomoloGene: 19815 GeneCards: ADGRV1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_032119

NM_054053

RefSeq (protein)

NP_115495

NP_473394

Location (UCSC) Chr 5: 90.53 – 91.16 Mb Chr 13: 81.24 – 81.78 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ADGRV1, also known as G protein-coupled receptor 98 (GPR98) or Very Large G-protein coupled receptor 1 (VLGR1), is a protein that in humans is encoded by the GPR98 gene. [5] Several alternatively spliced transcripts have been described. [5]

Contents

The adhesion GPCR VLGR1 is the largest GPCR known, with a size of 6300 amino acids and consisting of 90 exons. [6] There are 8 splice variants of VlgR1, named VlgR1a-1e and Mass1.1-1.3. The N-terminus consists of 5800 amino acids containing 35 Calx-beta domains, one pentraxin domain, and one epilepsy associated repeat. Mutations of VlgR1 have been shown to result in Usher's syndrome. Knockouts of Vlgr1 in mice have been shown to phenocopy Usher's syndrome and lead to audiogenic seizures.

Function

This gene encodes a member of the adhesion-GPCR family of receptors. [7] The protein binds calcium and is expressed in the central nervous system. It is also known as very large G-protein coupled receptor 1 because it is 6300 residues long. It contains a C-terminal 7-transmembrane receptor domain, whereas the large N-terminal segment (5900 residues) includes 35 calcium binding Calx-beta domains, and 6 EAR domains.

Evolution

The sea urchin genome has a homolog of VLGR1 in it. [8]

Clinical significance

Mutations in this gene are associated with Usher syndrome 2 and familial febrile seizures. [5]

Related Research Articles

<span class="mw-page-title-main">Brain-specific angiogenesis inhibitor 2</span> Protein-coding gene in the species Homo sapiens

Brain-specific angiogenesis inhibitor 2 is a protein that in humans is encoded by the BAI2 gene. It is a member of the adhesion-GPCR family of receptors.

<span class="mw-page-title-main">P2RY14</span> Protein-coding gene in the species Homo sapiens

P2Y purinoceptor 14 is a protein that in humans is encoded by the P2RY14 gene.

<span class="mw-page-title-main">GPR64</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor 64 also known as HE6 is a protein encoded by the ADGRG2 gene. GPR64 is a member of the adhesion GPCR family. Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">GPR124</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 124 is a protein that in humans is encoded by the GPR124 gene. It is a member of the adhesion-GPCR family of receptors. Family members are characterized by an extended extracellular region with a variable number of protein domains coupled to a TM7 domain via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">GPR171</span>

Probable G-protein coupled receptor 171 is a protein that in humans is encoded by the GPR171 gene.

<span class="mw-page-title-main">GPR126</span>

G protein-coupled receptor 126 also known as VIGR and DREG is a protein encoded by the ADGRG6 gene. GPR126 is a member of the adhesion GPCR family. Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">GPR123</span>

Probable G-protein coupled receptor 123 is a protein that in humans is encoded by the GPR123 gene. It is a member of the adhesion-GPCR family of receptors. Family members are normally characterized by an extended extracellular region with a variable number of protein domains coupled to a TM7 domain via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">GPR128</span>

G protein-coupled receptor 128 is a protein encoded by the ADGRG7 gene. GPR128 is a member of the adhesion GPCR family. Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">GPR112</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor 112 is a protein encoded by the ADGRG4 gene. GPR112 is a member of the adhesion GPCR family. Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">GPR155</span> Protein-coding gene in the species Homo sapiens

Integral membrane protein GPR155, also known as G protein-coupled receptor 155, is a protein that in humans is encoded by the GPR155 gene. Mutations in this gene may be associated with autism.

<span class="mw-page-title-main">GPR113</span>

GPR113 is a gene that encodes the Probable G-protein coupled receptor 113 protein.

<span class="mw-page-title-main">GPR125</span> Protein-coding gene in the species Homo sapiens

Adhesion G-protein coupled receptor A3 (ADGRA3), also known as GPR125, is an adhesion GPCR that in humans is encoded by the Adgra3 gene.

<span class="mw-page-title-main">GPR115</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 115 is a protein that in humans is encoded by the GPR115 gene.

<span class="mw-page-title-main">GPR111</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 111 is a protein that in humans is encoded by the GPR111 gene.

<span class="mw-page-title-main">GPR110</span>

Probable G-protein coupled receptor 110 is a protein that in humans is encoded by the GPR110 gene. This gene encodes a member of the adhesion-GPCR receptor family. Family members are characterized by an extended extracellular region with a variable number of N-terminal protein modules coupled to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">GPR133</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 133 is a protein that in humans is encoded by the GPR133 gene.

<span class="mw-page-title-main">GPR144</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 144 is a protein that in humans is encoded by the GPR144 gene. This gene encodes a member of the adhesion-GPCR family of receptors. Family members are characterised by an extended extracellular region with a variable number of protein domains coupled to a TM7 domain via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">GPR56</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor 56 also known as TM7XN1 is a protein encoded by the ADGRG1 gene. GPR56 is a member of the adhesion GPCR family. Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">GPR83</span>

Probable G-protein coupled receptor 83 is a protein that in humans is encoded by the GPR83 gene.

<span class="mw-page-title-main">GPR148</span>

G protein-coupled receptor 148, also known as GPR148, is a human orphan receptor from GPCR superfamily. It is expressed primarily in nervous system and testis. Is may be implicated in prostate cancer.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000164199 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000069170 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 "Entrez Gene: GPR98 G protein-coupled receptor 98".
  6. Sun, JP; Li, R; Ren, HZ; Xu, AT; Yu, X; Xu, ZG (May 2013). "The very large g protein coupled receptor (vlgr1) in hair cells". J Mol Neurosci. 50 (1): 204–14. doi:10.1007/s12031-012-9911-5. PMID   23180093. S2CID   16730555.
  7. Stacey M, Yona S (2011). AdhesionGPCRs: Structure to Function (Advances in Experimental Medicine and Biology). Berlin: Springer. ISBN   978-1-4419-7912-4.
  8. Whittakera, Charles A.; Bergerone, Karl-Frederik; Whittlec, James; Bruce, P. (2006). "Brandhorste, Robert D. Burked, Richard O. Hynes. The echinoderm adhesome". Developmental Biology. 300 (1): 252–266. doi:10.1016/j.ydbio.2006.07.044. PMC   3565218 . PMID   16950242.

Further reading