Hypocretin (orexin) receptor 2

Last updated
HCRTR2
HCRTR2.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases HCRTR2 , OX2R, Hypocretin (orexin) receptor 2, hypocretin receptor 2, ORXR2, OXR2
External IDs OMIM: 602393 MGI: 2680765 HomoloGene: 1168 GeneCards: HCRTR2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001526
NM_001384272

NM_198962
NM_001364551

RefSeq (protein)

NP_001517

NP_945200
NP_001351480

Location (UCSC) Chr 6: 55.11 – 55.28 Mb Chr 9: 76.13 – 76.23 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse
Orexin receptor type 2
Identifiers
SymbolOrexin_rec2
Pfam PF03827
InterPro IPR004060
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Orexin receptor type 2 (Ox2R or OX2), also known as hypocretin receptor type 2 (HcrtR2), is a protein that in humans is encoded by the HCRTR2 gene. [5]

Contents

Structure

The structure of the receptor has been solved to 2.5 Å resolution as a fusion protein bound to suvorexant using lipid-mediated crystallization. [6]

Function

OX2 is a G-protein coupled receptor expressed exclusively in the brain. It has 64% identity with OX1. OX2 binds both orexin A and orexin B neuropeptides. OX2 is involved in the central feedback mechanism that regulates feeding behaviour. [5] Mice with enhanced OX2 signaling are resistant to high-fat diet-induced obesity. [7]

This receptor is activated by Hipocretin, which is a wake-promoting hypothalamic neuropeptide that acts as a critical regulator of sleep in animals as Zebrafish or Mammals. This protein has mutations in Astyanax mexicanus that reduces the sleep needs of the cavefish. [8]

Ligands

Agonists

Antagonists

See also

Related Research Articles

<span class="mw-page-title-main">Orexin</span> Neuropeptide that regulates arousal, wakefulness, and appetite.

Orexin, also known as hypocretin, is a neuropeptide that regulates arousal, wakefulness, and appetite. It exists in the forms of orexin-A and orexin-B. The most common form of narcolepsy, type 1, in which the individual experiences brief losses of muscle tone, is caused by a lack of orexin in the brain due to destruction of the cells that produce it.

<span class="mw-page-title-main">Lateral hypothalamus</span>

The lateral hypothalamus (LH), also called the lateral hypothalamic area (LHA), contains the primary orexinergic nucleus within the hypothalamus that widely projects throughout the nervous system; this system of neurons mediates an array of cognitive and physical processes, such as promoting feeding behavior and arousal, reducing pain perception, and regulating body temperature, digestive functions, and blood pressure, among many others. Clinically significant disorders that involve dysfunctions of the orexinergic projection system include narcolepsy, motility disorders or functional gastrointestinal disorders involving visceral hypersensitivity, and eating disorders.

The orexin receptor (also referred to as the hypocretin receptor) is a G-protein-coupled receptor that binds the neuropeptide orexin. There are two variants, OX1 and OX2, each encoded by a different gene (HCRTR1, HCRTR2).

<span class="mw-page-title-main">Hypocretin (orexin) receptor 1</span> Protein-coding gene in the species Homo sapiens

Orexin receptor type 1 (Ox1R or OX1), also known as hypocretin receptor type 1 (HcrtR1), is a protein that in humans is encoded by the HCRTR1 gene.

<span class="mw-page-title-main">Melanocortin 3 receptor</span> Mammalian protein found in Homo sapiens

Melanocortin 3 receptor (MC3R) is a protein that in humans is encoded by the MC3R gene.

<span class="mw-page-title-main">Pancreatic polypeptide receptor 1</span> Protein-coding gene in the species Homo sapiens

Pancreatic polypeptide receptor 1, also known as Neuropeptide Y receptor type 4, is a protein that in humans is encoded by the PPYR1 gene.

<span class="mw-page-title-main">Almorexant</span> Orexin antagonist compound

Almorexant (INN), also known by its development code ACT-078573, is an orexin antagonist, acting as a competitive antagonist of the OX1 and OX2 orexin receptors, which was being developed by the pharmaceutical companies Actelion and GSK for the treatment of insomnia. Development of the drug was abandoned in January 2011 due to concerns over the hepatic safety of almorexant after transient increases in liver enzymes were observed in trials.

<span class="mw-page-title-main">TCS-OX2-29</span> Orexin antagonist

TCS-OX2-29 is an orexin antagonist. It was the first non-peptide antagonist developed that is selective for the orexin receptor subtype OX2, with an IC50 of 40nM and selectivity of around 250x for OX2 over OX1 receptors. Orexin antagonists are expected to be useful for the treatment of insomnia, with subtype-selective antagonists such as TCS-OX2-29 potentially offering more specificity of action compared to non-selective orexin antagonists like almorexant.

<span class="mw-page-title-main">SB-334867</span> Chemical compound

SB-334867 is an orexin antagonist. It was the first non-peptide antagonist developed that is selective for the orexin receptor subtype OX1, with around 50x selectivity for OX1 over OX2 receptors. It has been shown to produce sedative and anorectic effects in animals, and has been useful in characterising the orexinergic regulation of brain systems involved with appetite and sleep, as well as other physiological processes. The hydrochloride salt of SB-334867 has been demonstrated to be hydrolytically unstable, both in solution and as the solid. Orexin antagonists have multiple potential clinical applications including the treatment of drug addiction, insomnia, obesity and diabetes.

<span class="mw-page-title-main">SB-408124</span> Chemical compound

SB-408124 is a drug which is a non-peptide antagonist selective for the orexin receptor subtype OX1, with around 70x selectivity for OX1 over OX2 receptors, and improved oral bioavailability compared to the older OX1 antagonist SB-334867. It is used in scientific research into the function of orexinergic neurons in the body.

<span class="mw-page-title-main">Suvorexant</span> Medication used to treat insomnia

Suvorexant, sold under the brand name Belsomra, is an orexin antagonist medication which is used in the treatment of insomnia. It is indicated specifically for the treatment of insomnia characterized by difficulties with sleep onset and/or maintenance in adults. Suvorexant helps with falling asleep faster, sleeping longer, being awake less in the middle of the night, and having better quality of sleep. Its effectiveness is modest, and is similar to that of other orexin antagonists, but is lower than that of benzodiazepines and Z-drugs. Suvorexant is taken by mouth.

An orexin receptor antagonist, or orexin antagonist, is a drug that inhibits the effect of orexin by acting as a receptor antagonist of one (selective orexin receptor antagonist or SORA) or both (dual orexin receptor antagonis or DORA) of the orexin receptors, OX1 and OX2. Medical applications include treatment of sleep disorders such as insomnia.

<span class="mw-page-title-main">EMPA (drug)</span> Chemical compound

EMPA is a selective antagonist of the OX2 receptor, with 900-fold selectivity in binding for OX2 over OX1.

<span class="mw-page-title-main">Filorexant</span> Chemical compound

Filorexant (INNTooltip International Nonproprietary Name, USANTooltip United States Approved Name; developmental code name MK-6096) is an orexin antagonist which was under development by Merck for the treatment of insomnia, depression, diabetic neuropathy, and migraine. It is a dual antagonist of the orexin OX1 and OX2 receptors. It has a relatively short elimination half-life of 3 to 6 hours. However, it dissociates slowly from the orexin receptors and may thereby have a longer duration. Possibly in relation to this, filorexant shows next-day somnolence similarly to suvorexant. In phase 2 clinical trials, filorexant was found to be effective in the treatment of insomnia, but was not effective in the treatment of major depressive disorder, painful diabetic neuropathy, or migraine. As of May 2015, filorexant was no longer listed on Merck's online development pipeline and hence development of the drug appears to have been discontinued. Development of filorexant may have been discontinued due to lack of differentiation from suvorexant (which was also developed by Merck).

<span class="mw-page-title-main">Seltorexant</span> Experimental anti-insomnia drug

Seltorexant, also known by its developmental code names MIN-202 and JNJ-42847922, is an orexin antagonist medication which is under development for the treatment of depression and insomnia. It is a selective antagonist of the orexin OX2 receptor (2-SORA). The medication is taken by mouth. As of February 2022, seltorexant is in phase 3 clinical trials for treatment of major depressive disorder (MDD) and phase 2 trials for treatment of insomnia. It was also under investigation for the treatment of sleep apnea, but no recent development has been reported for this indication. Seltorexant is under development by Minerva Neurosciences and Johnson & Johnson's Janssen Pharmaceuticals.

<span class="mw-page-title-main">Lemborexant</span> Chemical compound

Lemborexant, sold under the brand name Dayvigo, is an orexin antagonist medication which is used in the treatment of insomnia. It is indicated specifically for the treatment of insomnia characterized by difficulties with sleep onset and/or maintenance in adults. The medication is taken by mouth.

<span class="mw-page-title-main">Daridorexant</span> Medication used to treat insomnia

Daridorexant, sold under the brand name Quviviq, is an orexin antagonist medication which is used for the treatment of insomnia. Daridorexant is taken by mouth.

<span class="mw-page-title-main">Vornorexant</span> Chemical compound

Vornorexant, also known by its developmental code names ORN-0829 and TS-142, is an orexin antagonist medication which is under development for the treatment of insomnia and sleep apnea. It is a dual orexin OX1 and OX2 receptor antagonist (DORA). The medication is taken by mouth. As of June 2021, vornorexant is in phase 2 clinical trials for insomnia and phase 1 trials for sleep apnea. It is under development by Taisho Pharmaceutical.

<span class="mw-page-title-main">Firazorexton</span> Chemical compound

Firazorexton (INNTooltip International Nonproprietary Name; development code TAK-994) is an experimental orexin 2 (OX2) receptor agonist first described in a 2019 patent filed by Takeda Pharmaceutical Company.

<span class="mw-page-title-main">ACT-539313</span> Chemical compound

ACT-539313 is an orexin antagonist medication which is under development for the treatment of binge eating disorder and was previously under development for the treatment of anxiety disorders. It is an orally active small-molecule compound with an elimination half-life of 3.3 to 6.5 hours and acts as a selective orexin OX1 receptor antagonist (1-SORA). As of May 2022, the drug is in phase 2 clinical trials for binge eating disorder. Following negative efficacy results of a phase 2 trial of ACT-539313 for binge eating disorder, Idorsia (the developer of ACT-539313) signaled in May 2022 that it would not pursue further development of the drug for this indication.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000137252 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032360 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: HCRTR2 hypocretin (orexin) receptor 2".
  6. Liszewski K (1 October 2015). "Dissecting the Structure of Membrane Proteins". Genetic Engineering & Biotechnology News . 35 (17): 16. doi:10.1089/gen.35.07.09.
  7. Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, et al. (January 2009). "Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity". Cell Metabolism. 9 (1): 64–76. doi:10.1016/j.cmet.2008.10.010. PMC   2630400 . PMID   19117547.
  8. Warren WC, Boggs TE, Borowsky R, Carlson BM, Ferrufino E, Gross JB, et al. (March 2021). "A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution". Nature Communications. 12 (1): 1447. Bibcode:2021NatCo..12.1447W. doi:10.1038/s41467-021-21733-z. PMC   7933363 . PMID   33664263.
  9. 1 2 "WHO Drug Information, Vol. 34, No. 2, 2020 Proposed INN: List 123 263 : International Nonproprietary Names for Pharmaceutical Substances (INN)" (PDF). Who.int. Retrieved 2021-11-30.
  10. 1 2 WOapplication 2019027058,Kajita, Yuichi; Mikami, Satoshi& Miyanohana, Yuheiet al.,"Heterocyclic compound and use therof",published 2019-02-07, assigned to Takeda Pharmaceutical Company
  11. 1 2 Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, et al. (September 1999). "Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR". British Journal of Pharmacology. 128 (1): 1–3. doi:10.1038/sj.bjp.0702780. PMC   1571615 . PMID   10498827.
  12. 1 2 Langmead CJ, Jerman JC, Brough SJ, Scott C, Porter RA, Herdon HJ (January 2004). "Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor". British Journal of Pharmacology. 141 (2): 340–346. doi:10.1038/sj.bjp.0705610. PMC   1574197 . PMID   14691055.
  13. "Wave 1 Pipeline Market Opportunity Conference Call" (PDF). Takeda Pharmaceutical Company Limited. 8 December 2020. Archived from the original (PDF) on 2021-10-20. TAK-861, a second oral OX2R agonist will begin clinical testing in 2H FY20
  14. McAtee LC, Sutton SW, Rudolph DA, Li X, Aluisio LE, Phuong VK, et al. (August 2004). "Novel substituted 4-phenyl-[1,3]dioxanes: potent and selective orexin receptor 2 (OX(2)R) antagonists". Bioorganic & Medicinal Chemistry Letters. 14 (16): 4225–4229. doi:10.1016/j.bmcl.2004.06.032. PMID   15261275.
  15. Roecker AJ, Mercer SP, Schreier JD, Cox CD, Fraley ME, Steen JT, et al. (February 2014). "Discovery of 5-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3-terpyridine-3'-carboxamide (MK-1064): a selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia". ChemMedChem. 9 (2): 311–322. doi:10.1002/cmdc.201300447. PMID   24376006. S2CID   26114114.
  16. Kuduk SD, Skudlarek JW, DiMarco CN, Bruno JG, Pausch MH, O'Brien JA, et al. (June 2015). "Identification of MK-8133: An orexin-2 selective receptor antagonist with favorable development properties". Bioorganic & Medicinal Chemistry Letters. 25 (12): 2488–2492. doi:10.1016/j.bmcl.2015.04.066. PMID   25981685.
  17. Cole AG, Stroke IL, Qin LY, Hussain Z, Simhadri S, Brescia MR, et al. (October 2008). "Synthesis of (3,4-dimethoxyphenoxy)alkylamino acetamides as orexin-2 receptor antagonists". Bioorganic & Medicinal Chemistry Letters. 18 (20): 5420–5423. doi:10.1016/j.bmcl.2008.09.038. PMID   18815029.
  18. Fujimoto T, Kunitomo J, Tomata Y, Nishiyama K, Nakashima M, Hirozane M, et al. (November 2011). "Discovery of potent, selective, orally active benzoxazepine-based Orexin-2 receptor antagonists". Bioorganic & Medicinal Chemistry Letters. 21 (21): 6414–6416. doi:10.1016/j.bmcl.2011.08.093. PMID   21917455.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.