Muscarinic acetylcholine receptor M2

Last updated

CHRM2
Muscarinic receptor M2 coupled to protein G - 6OIK.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CHRM2 , HM2, cholinergic receptor muscarinic 2
External IDs OMIM: 118493; MGI: 88397; HomoloGene: 20190; GeneCards: CHRM2; OMA:CHRM2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_203491

RefSeq (protein)

NP_987076

Location (UCSC) Chr 7: 136.87 – 137.02 Mb Chr 6: 36.37 – 36.51 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The muscarinic acetylcholine receptor M2, also known as the cholinergic receptor, muscarinic 2, is a muscarinic acetylcholine receptor that in humans is encoded by the CHRM2 gene. [5] Multiple alternatively spliced transcript variants have been described for this gene. [5] It is Gi-coupled, reducing intracellular levels of cAMP.

Function

Heart

The M2 muscarinic receptors are located in the heart, where they act to slow the heart rate down to normal sinus rhythm after negative stimulatory actions of the parasympathetic nervous system, by slowing the speed of depolarization. They also reduce contractile forces of the atrial cardiac muscle, and reduce conduction velocity of the atrioventricular node (AV node). However, they have little effect on the contractile forces of the ventricular muscle, slightly decreasing force.

Airway smooth muscle

Both M2 and M3 muscarinic receptors are expressed in the smooth muscles of the airway, with the majority of the receptors being the M2 type. Activation of the M2 receptors, which are coupled to Gi, inhibits the β-adrenergic mediated relaxation of the airway smooth muscle. Synergistically, activation of the M3 receptors, which couple to Gq, stimulates contraction of the airway smooth muscle. [6]

IQ

A Dutch family study found that there is "a highly significant association" between the CHRM2 gene and intelligence as measured by the Wechsler Adult Intelligence Scale-Revised. [7] A similar association was found independently in the Minnesota Twin and Family Study. [8] [9]

However, a larger 2009 study attempting to replicate this claim instead found no significant association between the CHRM2 gene and intelligence. [10]

Olfactory behavior

Mediating olfactory guided behaviors (e.g. odor discrimination, aggression, mating). [11]

Mechanism of action

M2 muscarinic receptors act via a Gi type receptor, which causes a decrease in cAMP in the cell, generally leading to inhibitory-type effects. They appear to generally serve as autoreceptors. [12]

In addition, they modulate G protein-coupled inwardly-rectifying potassium channels. [13] [14] In the heart, this contributes to a decreased heart rate. They do so by the Gβγ subunit of the G protein; Gβγ shifts the open probability of K+ channels in the membrane of the cardiac pacemaker cells, which causes an outward current of potassium, effectively hyperpolarizing the membrane, which slows down the heart rate.

Ligands

Few highly selective M2 agonists are available at present, although there are several non-selective muscarinic agonists that stimulate M2, and a number of selective M2 antagonists are available.

Agonists

Antagonists

See also

Related Research Articles

<span class="mw-page-title-main">Acetylcholine</span> Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic.

<span class="mw-page-title-main">Acetylcholine receptor</span> Integral membrane protein

An acetylcholine receptor or a cholinergic receptor is an integral membrane protein that responds to the binding of acetylcholine, a neurotransmitter.

<span class="mw-page-title-main">Muscarine</span> Chemical compound

Muscarine, L-(+)-muscarine, or muscarin is a natural product found in certain mushrooms, particularly in Inocybe and Clitocybe species, such as the deadly C. dealbata. Mushrooms in the genera Entoloma and Mycena have also been found to contain levels of muscarine which can be dangerous if ingested. Muscarine has been found in harmless trace amounts in Boletus, Hygrocybe, Lactarius and Russula. Trace concentrations of muscarine are also found in Amanita muscaria, though the pharmacologically more relevant compound from this mushroom is the Z-drug-like alkaloid muscimol. A. muscaria fruitbodies contain a variable dose of muscarine, usually around 0.0003% fresh weight. This is very low and toxicity symptoms occur very rarely. Inocybe and Clitocybe contain muscarine concentrations up to 1.6%.

<span class="mw-page-title-main">Nicotinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of nicotine

Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral nervous system, muscle, and many other tissues of many organisms. At the neuromuscular junction they are the primary receptor in muscle for motor nerve-muscle communication that controls muscle contraction. In the peripheral nervous system: (1) they transmit outgoing signals from the presynaptic to the postsynaptic cells within the sympathetic and parasympathetic nervous system, and (2) they are the receptors found on skeletal muscle that receive acetylcholine released to signal for muscular contraction. In the immune system, nAChRs regulate inflammatory processes and signal through distinct intracellular pathways. In insects, the cholinergic system is limited to the central nervous system.

<span class="mw-page-title-main">Muscarinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of muscarine

Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers. They are mainly found in the parasympathetic nervous system, but also have a role in the sympathetic nervous system in the control of sweat glands.

Functional selectivity is the ligand-dependent selectivity for certain signal transduction pathways relative to a reference ligand at the same receptor. Functional selectivity can be present when a receptor has several possible signal transduction pathways. To which degree each pathway is activated thus depends on which ligand binds to the receptor. Functional selectivity, or biased signaling, is most extensively characterized at G protein coupled receptors (GPCRs). A number of biased agonists, such as those at muscarinic M2 receptors tested as analgesics or antiproliferative drugs, or those at opioid receptors that mediate pain, show potential at various receptor families to increase beneficial properties while reducing side effects. For example, pre-clinical studies with G protein biased agonists at the μ-opioid receptor show equivalent efficacy for treating pain with reduced risk for addictive potential and respiratory depression. Studies within the chemokine receptor system also suggest that GPCR biased agonism is physiologically relevant. For example, a beta-arrestin biased agonist of the chemokine receptor CXCR3 induced greater chemotaxis of T cells relative to a G protein biased agonist.

<span class="mw-page-title-main">Muscarinic agonist</span> Activating agent of the muscarinic acetylcholine receptor

A muscarinic agonist is an agent that activates the activity of the muscarinic acetylcholine receptor. The muscarinic receptor has different subtypes, labelled M1-M5, allowing for further differentiation.

<span class="mw-page-title-main">Muscarinic antagonist</span> Drug that binds to but does not activate muscarinic cholinergic receptors

A muscarinic receptor antagonist (MRA), also called an antimuscarinic, is a type of anticholinergic agent that blocks the activity of the muscarinic acetylcholine receptor. The muscarinic receptor is a protein involved in the transmission of signals through certain parts of the nervous system, and muscarinic receptor antagonists work to prevent this transmission from occurring. Notably, muscarinic antagonists reduce the activation of the parasympathetic nervous system. The normal function of the parasympathetic system is often summarised as "rest-and-digest", and includes slowing of the heart, an increased rate of digestion, narrowing of the airways, promotion of urination, and sexual arousal. Muscarinic antagonists counter this parasympathetic "rest-and-digest" response, and also work elsewhere in both the central and peripheral nervous systems.

A nicotinic agonist is a drug that mimics the action of acetylcholine (ACh) at nicotinic acetylcholine receptors (nAChRs). The nAChR is named for its affinity for nicotine.

Muscarinic acetylcholine receptor M<sub>5</sub> Protein-coding gene in the species Homo sapiens

The human muscarinic acetylcholine receptor M5, encoded by the CHRM5 gene, is a member of the G protein-coupled receptor superfamily of integral membrane proteins. It is coupled to Gq protein. Binding of the endogenous ligand acetylcholine to the M5 receptor triggers a number of cellular responses such as adenylate cyclase inhibition, phosphoinositide degradation, and potassium channel modulation. Muscarinic receptors mediate many of the effects of acetylcholine in the central and peripheral nervous system. The clinical implications of this receptor have not been fully explored; however, stimulation of this receptor is known to effectively decrease cyclic AMP levels and downregulate the activity of protein kinase A (PKA).

Muscarinic acetylcholine receptor M<sub>1</sub> Protein-coding gene in the species Homo sapiens

The muscarinic acetylcholine receptor M1, also known as the cholinergic receptor, muscarinic 1, is a muscarinic receptor that in humans is encoded by the CHRM1 gene. It is localized to 11q13.

Muscarinic acetylcholine receptor M<sub>3</sub> Protein and coding gene in humans

The muscarinic acetylcholine receptor, also known as cholinergic/acetylcholine receptor M3, or the muscarinic 3, is a muscarinic acetylcholine receptor encoded by the human gene CHRM3.

Muscarinic acetylcholine receptor M<sub>4</sub> Protein-coding gene

The muscarinic acetylcholine receptor M4, also known as the cholinergic receptor, muscarinic 4 (CHRM4), is a protein that, in humans, is encoded by the CHRM4 gene.

<span class="mw-page-title-main">CHRNA1</span> Protein-coding gene in the species Homo sapiens

Neuronal acetylcholine receptor subunit alpha-1, also known as nAChRα1, is a protein that in humans is encoded by the CHRNA1 gene. The protein encoded by this gene is a subunit of certain nicotinic acetylcholine receptors (nAchR).

<span class="mw-page-title-main">Alpha-7 nicotinic receptor</span> Type of cell receptor found in humans

The alpha-7 nicotinic receptor, also known as the α7 receptor, is a type of nicotinic acetylcholine receptor implicated in long-term memory, consisting entirely of α7 subunits. As with other nicotinic acetylcholine receptors, functional α7 receptors are pentameric [i.e., (α7)5 stoichiometry].

<span class="mw-page-title-main">ABT-418</span> Chemical compound

ABT-418 is a drug developed by Abbott, that has nootropic, neuroprotective and anxiolytic effects, and has been researched for treatment of both Alzheimer's disease and ADHD. It acts as an agonist at neural nicotinic acetylcholine receptors, subtype-selective binding with high affinity to the α4β2, α7/5-HT3, and α2β2 nicotinic acetylcholine receptors but not α3β4 receptors ABT-418 was reasonably effective for both applications and fairly well tolerated, but produced some side effects, principally nausea, and it is unclear whether ABT-418 itself will proceed to clinical development or if another similar drug will be used instead.

<span class="mw-page-title-main">Pozanicline</span> Synthetic nootropic drug

Pozanicline is a drug developed by Abbott, that has nootropic and neuroprotective effects. Animal studies suggested it useful for the treatment of ADHD and subsequent human trials have shown ABT-089 to be effective for this application. It binds with high affinity subtype-selective to the α4β2 nicotinic acetylcholine receptors and has partial agonism to the α6β2 subtype, but not the α7 and α3β4 subtypes familiar to nicotine. It has particularly low tendency to cause side effects compared to other drugs in the class.

<span class="mw-page-title-main">Xanomeline</span> Chemical compound

Xanomeline is a small molecule muscarinic acetylcholine receptor agonist that was first synthesized in a collaboration between Eli Lilly and Novo Nordisk as an investigational therapeutic being studied for the treatment of central nervous system disorders.

<span class="mw-page-title-main">Vedaclidine</span> Chemical compound

Vedaclidine (INN, codenamed LY-297,802, NNC 11-1053) is an experimental analgesic drug which acts as a mixed agonist–antagonist at muscarinic acetylcholine receptors, being a potent and selective agonist for the M1 and M4 subtypes, yet an antagonist at the M2, M3 and M5 subtypes. It is orally active and an effective analgesic over 3× the potency of morphine, with side effects such as salivation and tremor only occurring at many times the effective analgesic dose. Human trials showed little potential for development of dependence or abuse, and research is continuing into possible clinical application in the treatment of neuropathic pain and cancer pain relief.

CI-1017 is a muscarinic acetylcholine receptor agonist which is selective for and is approximately equipotent at the M1 and M4 receptors, with 20-30-fold lower affinity for the M2, M3, and M5 subtypes It is the (R)-enantiomer of the racemic compound PD-142,505.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000181072 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000045613 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: CHRM2 cholinergic receptor, muscarinic 2".
  6. Hirshman CA, Lande B, Croxton TL (January 1999). "Role of M2 muscarinic receptors in airway smooth muscle contraction". Life Sciences. 64 (6–7): 443–448. doi: 10.1016/S0024-3205(98)00586-4 . PMID   10069508.
  7. Gosso MF, van Belzen M, de Geus EJ, Polderman JC, Heutink P, Boomsma DI, Posthuma D (November 2006). "Association between the CHRM2 gene and intelligence in a sample of 304 Dutch families". Genes, Brain and Behavior. 5 (8): 577–584. doi: 10.1111/j.1601-183X.2006.00211.x . PMID   17081262.
  8. Comings DE, Wu S, Rostamkhani M, McGue M, Lacono WG, Cheng LS, MacMurray JP (January 2003). "Role of the cholinergic muscarinic 2 receptor (CHRM2) gene in cognition". Molecular Psychiatry. 8 (1): 10–11. doi:10.1038/sj.mp.4001095. PMID   12556901. S2CID   22314941.
  9. Dick DM, Aliev F, Kramer J, Wang JC, Hinrichs A, Bertelsen S, et al. (March 2007). "Association of CHRM2 with IQ: converging evidence for a gene influencing intelligence". Behavior Genetics. 37 (2): 265–272. doi:10.1007/s10519-006-9131-2. PMID   17160701. S2CID   9353852.
  10. Lind PA, Luciano M, Horan MA, Marioni RE, Wright MJ, Bates TC, et al. (September 2009). "No association between Cholinergic Muscarinic Receptor 2 (CHRM2) genetic variation and cognitive abilities in three independent samples". Behavior Genetics. 39 (5): 513–523. doi:10.1007/s10519-009-9274-z. PMID   19418213. S2CID   2523697.
  11. Smith RS, Hu R, DeSouza A, Eberly CL, Krahe K, Chan W, Araneda RC (July 2015). "Differential Muscarinic Modulation in the Olfactory Bulb". The Journal of Neuroscience. 35 (30): 10773–10785. doi:10.1523/JNEUROSCI.0099-15.2015. PMC   4518052 . PMID   26224860.
  12. Douglas CL, Baghdoyan HA, Lydic R (December 2001). "M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse". The Journal of Pharmacology and Experimental Therapeutics. 299 (3): 960–966. PMID   11714883.
  13. 1 2 3 4 5 6 Rang HP (2003). Pharmacology. Edinburgh: Churchill Livingstone. ISBN   0-443-07145-4.
  14. Boron WF, Boulpaep EL (2005). Medical Physiology. Philadelphia: Elsevier Saunders. p. 387. ISBN   1-4160-2328-3.
  15. Scapecchi S, Matucci R, Bellucci C, Buccioni M, Dei S, Guandalini L, et al. (March 2006). "Highly chiral muscarinic ligands: the discovery of (2S,2'R,3'S,5'R)-1-methyl-2-(2-methyl-1,3-oxathiolan-5-yl)pyrrolidine 3-sulfoxide methyl iodide, a potent, functionally selective, M2 partial agonist". Journal of Medicinal Chemistry. 49 (6): 1925–1931. doi:10.1021/jm0510878. PMID   16539379.
  16. Matera C, Flammini L, Quadri M, Vivo V, Ballabeni V, Holzgrabe U, et al. (March 2014). "Bis(ammonio)alkane-type agonists of muscarinic acetylcholine receptors: synthesis, in vitro functional characterization, and in vivo evaluation of their analgesic activity". European Journal of Medicinal Chemistry. 75: 222–232. doi:10.1016/j.ejmech.2014.01.032. PMID   24534538.
  17. Cristofaro I, Spinello Z, Matera C, Fiore M, Conti L, De Amici M, et al. (September 2018). "Activation of M2 muscarinic acetylcholine receptors by a hybrid agonist enhances cytotoxic effects in GB7 glioblastoma cancer stem cells". Neurochemistry International. 118: 52–60. doi:10.1016/j.neuint.2018.04.010. PMID   29702145. S2CID   207125517.
  18. Bock A, Merten N, Schrage R, Dallanoce C, Bätz J, Klöckner J, et al. (2012-09-04). "The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling". Nature Communications. 3: 1044. Bibcode:2012NatCo...3.1044B. doi:10.1038/ncomms2028. PMC   3658004 . PMID   22948826.
  19. Riefolo F, Matera C, Garrido-Charles A, Gomila AM, Sortino R, Agnetta L, et al. (May 2019). "Optical Control of Cardiac Function with a Photoswitchable Muscarinic Agonist". Journal of the American Chemical Society. 141 (18): 7628–7636. doi:10.1021/jacs.9b03505. hdl: 2445/147236 . PMID   31010281. S2CID   128361100.
  20. Edwards Pharmaceuticals, Inc., Belcher Pharmaceuticals, Inc. (May 2010), "ED-SPAZ- hyoscyamine sulfate tablet, orally disintegrating", DailyMed, U.S. National Library of Medicine, retrieved January 13, 2013
  21. Melchiorre C, Angeli P, Lambrecht G, Mutschler E, Picchio MT, Wess J (December 1987). "Antimuscarinic action of methoctramine, a new cardioselective M-2 muscarinic receptor antagonist, alone and in combination with atropine and gallamine". European Journal of Pharmacology. 144 (2): 117–124. doi:10.1016/0014-2999(87)90509-7. PMID   3436364.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.