Oxyphencyclimine

Last updated
Oxyphencyclimine
Oxyphencyclimine.png
Clinical data
AHFS/Drugs.com International Drug Names
ATC code
Identifiers
  • (1-Methyl-1,4,5,6-tetrahydropyrimidin-2-yl)methyl 2-cyclohexyl-2-hydroxy-2-phenylacetate
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.004.313 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C20H28N2O3
Molar mass 344.455 g·mol−1
  • InChI=1S/C20H28N2O3/c1-22-14-8-13-21-18(22)15-25-19(23)20(24,16-9-4-2-5-10-16)17-11-6-3-7-12-17/h2,4-5,9-10,17,24H,3,6-8,11-15H2,1H3 X mark.svgN
  • Key:DUDKAZCAISNGQN-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Oxyphencyclimine is a muscarinic receptor antagonist, given orally to treat peptic ulcer disease and gastrointestinal spasms. It has antispasmodic and antimotility properties.

Synthesis

The reaction of chloroacetonitrile (1) with methanol and hydrogen chloride leads to the corresponding iminoether (Pinner reaction). Condensation of 2 with 3-methylaminopropylamine gives (3) gives the corresponding tetrahydropyrimidine (4). Displacement of the halogen with the sodium salt 5 affords oxyphencyclimine (6).

Oxyphencyclimine synthesis. Oxyphencyclimine synthesis.svg
Oxyphencyclimine synthesis.

Related Research Articles

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. These compounds contain a distinctive functional group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Thioester</span> Organosulfur compounds of the form R–SC(=O)–R’

In organic chemistry, thioesters are organosulfur compounds with the molecular structure R−C(=O)−S−R’. They are analogous to carboxylate esters with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio- prefix. They are the product of esterification of a carboxylic acid with a thiol. In biochemistry, the best-known thioesters are derivatives of coenzyme A, e.g., acetyl-CoA. The R and R' represent organyl groups, or H in the case of R.

Acrylates are the salts, esters, and conjugate bases of acrylic acid. The acrylate ion is the anion CH2=CHCO−2. Often, acrylate refers to esters of acrylic acid, the most common member being methyl acrylate. These acrylates contain vinyl groups. These compounds are of interest because they are bifunctional: the vinyl group is susceptible to polymerization and the carboxylate group carries myriad functionalities.

The Bouveault–Blanc reduction is a chemical reaction in which an ester is reduced to primary alcohols using absolute ethanol and sodium metal. It was first reported by Louis Bouveault and Gustave Louis Blanc in 1903. Bouveault and Blanc demonstrated the reduction of ethyl oleate and n-butyl oleate to oleyl alcohol. Modified versions of which were subsequently refined and published in Organic Syntheses.

<span class="mw-page-title-main">Knorr pyrrole synthesis</span> Chemical reaction

The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group α to a carbonyl group (2).

Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.

<span class="mw-page-title-main">Ortho ester</span> Chemical group with the structure RC(OR)3

In organic chemistry, an ortho ester is a functional group containing three alkoxy groups attached to one carbon atom, i.e. with the general formula RC(OR')3. Orthoesters may be considered as products of exhaustive alkylation of unstable orthocarboxylic acids and it is from these that the name 'ortho ester' is derived. An example is ethyl orthoacetate, CH3C(OCH2CH3)3, more correctly known as 1,1,1-triethoxyethane.

<span class="mw-page-title-main">Darzens reaction</span>

The Darzens reaction is the chemical reaction of a ketone or aldehyde with an α-haloester in the presence of a base to form an α,β-epoxy ester, also called a "glycidic ester". This reaction was discovered by the organic chemist Auguste Georges Darzens in 1904.

<span class="mw-page-title-main">Sulfinic acid</span> Class of chemical compounds

Sulfinic acids are oxoacids of sulfur with the structure RSO(OH). In these organosulfur compounds, sulfur is pyramidal.

<span class="mw-page-title-main">Cisatracurium besilate</span> Chemical compound

Cisatracurium besilate is a bisbenzyltetrahydroisoquinolinium that has effect as a neuromuscular-blocking drug non-depolarizing neuromuscular-blocking drugs, used adjunctively in anesthesia to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation. It shows intermediate duration of action. Cisatracurium is one of the ten isomers of the parent molecule, atracurium. Moreover, cisatracurium represents approximately 15% of the atracurium mixture.

There are several Akabori amino acid reactions, which are named after Shirō Akabori (Japanese: 赤堀 四郎) (1900–1992), a Japanese chemist.

<span class="mw-page-title-main">Dimethoxanate</span> Chemical compound

Dimethoxanate is a cough suppressant of the phenothiazine class.

<span class="mw-page-title-main">Hexobendine</span> Chemical compound

Hexobendine is a vasodilator that acts as an adenosine reuptake inhibitor.

<span class="mw-page-title-main">Tiropramide</span> Chemical compound

Tiropramide is the International nonproprietary name of an antispasmodic drug.

The Markó–Lam deoxygenation is an organic chemistry reaction where the hydroxy functional group in an organic compound is replaced by a hydrogen atom to give an alkyl group. The Markó-Lam reaction is a variant of the Bouveault–Blanc reduction and an alternative to the classical Barton–McCombie deoxygenation. It is named for the Belgian chemists István Markó and Kevin Lam.

<span class="mw-page-title-main">Pirandamine</span> Chemical compound

Pirandamine (AY-23,713) is a tricyclic derivative which acts as a selective serotonin reuptake inhibitor (SSRI). It was investigated in the 1970s as a potential antidepressant but clinical development was not commenced and it was never marketed. Pirandamine is structurally related to tandamine, which, in contrast, is a selective norepinephrine reuptake inhibitor.

<span class="mw-page-title-main">WIN-2299</span> Chemical compound

WIN-2299 is an anticholinergic drug. Human reactions to WIN-2299 include sedation, LSD-like reactions, and an acute delirious episode.

The Mislow–Evans rearrangement is a name reaction in organic chemistry. It is named after Kurt Mislow who reported the prototypical reaction in 1966, and David A. Evans who published further developments. The reaction allows the formation of allylic alcohols from allylic sulfoxides in a 2,3-sigmatropic rearrangement.

In organophosphorus chemistry, the Kinnear–Perren reaction (sometimes the Clay-Kinnear-Perren reaction) is used to prepare alkylphosphonyl dichlorides (RP(O)Cl2) and alkylphosphonate esters (RP(O)(OR')2). The reactants are alkyl chloride, phosphorus trichloride, and aluminium trichloride as catalyst. The reaction proceeds via the alkyltrichlorophosphonium salt:

References

  1. Faust JA, Mori A, Sahyun M (1959). "Antispasmodics: Esters of Heterocyclic Alcohols". Journal of the American Chemical Society. 81 (9): 2214–2219. doi:10.1021/ja01518a051.
  2. GB 795758,"Amino esters and the preparation thereof",published 1958-05-28, assigned to Charles Pfizer & Co. Inc.