Mazaticol

Last updated
Mazaticol
Mazaticol.svg
Clinical data
Routes of
administration
Oral
ATC code
Legal status
Legal status
  • In general: uncontrolled
Identifiers
  • [(1R,3R,5R)-6,6,9-trimethyl-9-azabicyclo[3.3.1]non-3-yl hydroxy(di-2-thienyl)acetate
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C21H27NO3S2
Molar mass 405.57 g·mol−1
3D model (JSmol)
  • CC1(CC[C@@H]2C[C@H](C[C@H]1N2C)OC(=O)C(c3cccs3)(c4cccs4)O)C
  • InChI=1S/C21H27NO3S2/c1-20(2)9-8-14-12-15(13-16(20)22(14)3)25-19(23)21(24,17-6-4-10-26-17)18-7-5-11-27-18/h4-7,10-11,14-16,24H,8-9,12-13H2,1-3H3/t14-,15-,16-/m1/s1
  • Key:AMHPTVWBZSYFSS-BZUAXINKSA-N
   (verify)

Mazaticol (Pentona) is an anticholinergic used as an antiparkinsonian agent in Japan.

The compound was known as PG-501 is first mentioned in Japanese studies in the early 1970s, noting "PG-501 was found to have pronounced anti-acetylcholine, anti-tremorine-induced tremor, anti-physostigmine-induced death, anti-haloperidol-induced parkinsonism and anti EEG arousal activities." [1] [2]

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Beta blocker</span> Class of medications used to manage abnormal heart rhythms

Beta blockers, also spelled β-blockers, are a class of medications that are predominantly used to manage abnormal heart rhythms (arrhythmia), and to protect the heart from a second heart attack after a first heart attack. They are also widely used to treat high blood pressure, although they are no longer the first choice for initial treatment of most patients.

β-Carboline Chemical compound also known as norharmane

β-Carboline (9H-pyrido[3,4-b]indole) represents the basic chemical structure for more than one hundred alkaloids and synthetic compounds. The effects of these substances depend on their respective substituent. Natural β-carbolines primarily influence brain functions but can also exhibit antioxidant effects. Synthetically designed β-carboline derivatives have recently been shown to have neuroprotective, cognitive enhancing and anti-cancer properties.

<span class="mw-page-title-main">Neuroprotection</span> Relative preservation of neuronal structure and/or function

Neuroprotection refers to the relative preservation of neuronal structure and/or function. In the case of an ongoing insult the relative preservation of neuronal integrity implies a reduction in the rate of neuronal loss over time, which can be expressed as a differential equation. It is a widely explored treatment option for many central nervous system (CNS) disorders including neurodegenerative diseases, stroke, traumatic brain injury, spinal cord injury, and acute management of neurotoxin consumption. Neuroprotection aims to prevent or slow disease progression and secondary injuries by halting or at least slowing the loss of neurons. Despite differences in symptoms or injuries associated with CNS disorders, many of the mechanisms behind neurodegeneration are the same. Common mechanisms of neuronal injury include decreased delivery of oxygen and glucose to the brain, energy failure, increased levels in oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation. Of these mechanisms, neuroprotective treatments often target oxidative stress and excitotoxicity—both of which are highly associated with CNS disorders. Not only can oxidative stress and excitotoxicity trigger neuron cell death but when combined they have synergistic effects that cause even more degradation than on their own. Thus limiting excitotoxicity and oxidative stress is a very important aspect of neuroprotection. Common neuroprotective treatments are glutamate antagonists and antioxidants, which aim to limit excitotoxicity and oxidative stress respectively.

<span class="mw-page-title-main">Etizolam</span> Chemical compound

Etizolam is a thienodiazepine derivative which is a benzodiazepine analog. The etizolam molecule differs from a benzodiazepine in that the benzene ring has been replaced by a thiophene ring and triazole ring has been fused, making the drug a thienotriazolodiazepine.

<span class="mw-page-title-main">Lisuride</span> Chemical compound

Lisuride, sold under the brand name Dopergin among others, is a monoaminergic medication of the ergoline class which is used in the treatment of Parkinson's disease, migraine, and high prolactin levels. It is taken by mouth.

<span class="mw-page-title-main">Piribedil</span> Chemical compound

Piribedil (trade names Pronoran, Trivastal Retard, Trastal, Trivastan, Clarium and others) is an antiparkinsonian agent and piperazine derivative which acts as a D2 and D3 receptor agonist. It also has α2-adrenergic antagonist properties.

<span class="mw-page-title-main">Dihydroergocryptine</span> Chemical compound

Dihydroergocryptine (DHEC), sold under the brand names Almirid and Cripar among others, is a dopamine agonist of the ergoline group that is used as an antiparkinson agent in the treatment of Parkinson's disease. It is taken by mouth.

<span class="mw-page-title-main">NMDA receptor antagonist</span> Class of anesthetics

NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the N-Methyl-D-aspartate receptor (NMDAR). They are commonly used as anesthetics for human and non-human animals; the state of anesthesia they induce is referred to as dissociative anesthesia.

<span class="mw-page-title-main">Nuclear receptor 4A2</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor 4A2 (NR4A2) also known as nuclear receptor related 1 protein (NURR1) is a protein that in humans is encoded by the NR4A2 gene. NR4A2 is a member of the nuclear receptor family of intracellular transcription factors.

<span class="mw-page-title-main">Mosapride</span> Chemical compound

Mosapride is a gastroprokinetic agent that acts as a selective 5HT4 agonist. The major active metabolite of mosapride, known as M1, additionally acts as a 5HT3 antagonist, which accelerates gastric emptying throughout the whole of the gastrointestinal tract in humans, and is used for the treatment of gastritis, gastroesophageal reflux disease, functional dyspepsia and irritable bowel syndrome. It is recommended to be taken on an empty stomach (i.e. at least one hour before food or two hours after food).

Adenosine A<sub>2A</sub> receptor Cell surface receptor found in humans

The adenosine A2A receptor, also known as ADORA2A, is an adenosine receptor, and also denotes the human gene encoding it.

<span class="mw-page-title-main">SCH-58261</span> Chemical compound

SCH-58261 is a drug which acts as a potent and selective antagonist for the adenosine receptor A2A, with more than 50x selectivity for A2A over other adenosine receptors. It has been used to investigate the mechanism of action of caffeine, which is a mixed A1 / A2A antagonist, and has shown that the A2A receptor is primarily responsible for the stimulant and ergogenic effects of caffeine, but blockade of both A1 and A2A receptors is required to accurately replicate caffeine's effects in animals. SCH-58261 has also shown antidepressant, nootropic and neuroprotective effects in a variety of animal models, and has been investigated as a possible treatment for Parkinson's disease.

Ca<sub>v</sub>1.3 Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, L type, alpha 1D subunit is a protein that in humans is encoded by the CACNA1D gene. Cav1.3 channels belong to the Cav1 family, which form L-type calcium currents and are sensitive to selective inhibition by dihydropyridines (DHP).

<span class="mw-page-title-main">Indeloxazine</span> Antidepressant and cerebral activator

Indeloxazine (INN) is an antidepressant and cerebral activator that was marketed in Japan and South Korea by Yamanouchi Pharmaceutical Co., Ltd for the treatment of psychiatric symptoms associated with cerebrovascular diseases, namely depression resulting from stroke, emotional disturbance, and avolition. It was marketed from 1988 to 1998, when it was removed from the market reportedly for lack of effectiveness.

<span class="mw-page-title-main">Befiradol</span> Chemical compound

Befiradol is an experimental drug being studied for the treatment of levodopa-induced dyskinesia. It is a potent and selective 5-HT1A receptor full agonist.

<span class="mw-page-title-main">Clocapramine</span> Antipsychotic medication

Clocapramine, also known as 3-chlorocarpipramine, is an atypical antipsychotic of the iminostilbene class which was introduced in Japan in 1974 by Yoshitomi for the treatment of schizophrenia. In addition to psychosis, clocapramine has also been used to augment antidepressants in the treatment of anxiety and panic.

<span class="mw-page-title-main">Teniloxazine</span> Chemical compound

Teniloxazine, also known as sufoxazine and sulfoxazine, is a drug which is marketed in Japan. Though initially investigated as a neuroprotective and nootropic agent for the treatment of cerebrovascular insufficiency in the 1980s, it was ultimately developed and approved as an antidepressant instead. It acts as a potent norepinephrine reuptake inhibitor, with fair selectivity over the serotonin and dopamine transporters, and also behaves as an antagonist of the 5-HT2A receptor.

<span class="mw-page-title-main">OSU-6162</span> Chemical compound

OSU-6162 (PNU-96391) is a compound which acts as a partial agonist at both dopamine D2 receptors and 5-HT2A receptors. It acts as a dopamine stabilizer in a similar manner to the closely related drug pridopidine, and has antipsychotic, anti-addictive and anti-Parkinsonian effects in animal studies. Both enantiomers show similar activity but with different ratios of effects, with the (S) enantiomer (–)-OSU-6162 that is more commonly used in research, having higher binding affinity to D2 but is a weaker partial agonist at 5-HT2A, while the (R) enantiomer (+)-OSU-6162 has higher efficacy at 5-HT2A but lower D2 affinity.

<span class="mw-page-title-main">Tremorine</span> Chemical compound

Tremorine is a drug which is used in scientific research to produce tremor in animals. This is used for the development of drugs for the treatment of Parkinson's disease, as tremor is a major symptom which is treated by anti-Parkinson's drugs. Beta blockers are also effective in counteracting the effects of tremorine.

References

  1. Nose T, Kojima M, Ishida R, Shintomi K, Kowa Y (July 1971). "[Pharmacological properties of 6,6,9-trimethyl-9-azabicyclo (3,3,1)non-3 beta-yl-alpha, alpha-di(2-thienyl) glycolate hydrochloride monohydrate (PG-501), a new anti-parkinsonian agent]". Nihon Yakurigaku Zasshi. Folia Pharmacologica Japonica (in Japanese). 67 (4): 387–405. doi: 10.1254/fpj.67.387 . PMID   5000167.
  2. Kosaka K (1971). "パ ー キ ン ソ ン病 に対 す るPG-501の 使 用 経 験/The Beneficial Effect of PG-501 on Parkinsonism". Rinsho Yakuri/Japanese Journal of Clinical Pharmacology and Therapeutics. 2 (3): 230–235. doi: 10.3999/jscpt.2.230 . Retrieved December 18, 2023.