OPN1SW

Last updated
OPN1SW
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases OPN1SW , BCP, BOP, CBT, opsin 1 (cone pigments), short-wave-sensitive, opsin 1, short wave sensitive
External IDs OMIM: 613522 MGI: 99438 HomoloGene: 1291 GeneCards: OPN1SW
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001708
NM_001385125

NM_007538

RefSeq (protein)

NP_001699

NP_031564

Location (UCSC) Chr 7: 128.77 – 128.78 Mb Chr 6: 29.38 – 29.39 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Blue-sensitive opsin is a protein that in humans is encoded by the OPN1SW gene. [5] [6] [7]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Color blindness</span> Decreased ability to see color or color differences

Color blindness is the decreased ability to see color or differences in color. It can impair tasks such as selecting ripe fruit, choosing clothing, and reading traffic lights. Color blindness may make some academic activities more difficult. However, issues are generally minor, and the colorblind automatically develop adaptations and coping mechanisms. People with total color blindness (achromatopsia) may also be uncomfortable in bright environments and have decreased visual acuity.

<span class="mw-page-title-main">Color vision</span> Ability to perceive differences in light frequency

Color vision, a feature of visual perception, is an ability to perceive differences between light composed of different wavelengths independently of light intensity. Color perception is a part of the larger visual system and is mediated by a complex process between neurons that begins with differential stimulation of different types of photoreceptors by light entering the eye. Those photoreceptors then emit outputs that are propagated through many layers of neurons and then ultimately to the brain. Color vision is found in many animals and is mediated by similar underlying mechanisms with common types of biological molecules and a complex history of evolution in different animal taxa. In primates, color vision may have evolved under selective pressure for a variety of visual tasks including the foraging for nutritious young leaves, ripe fruit, and flowers, as well as detecting predator camouflage and emotional states in other primates.

<span class="mw-page-title-main">Tetrachromacy</span> Type of color vision with four types of cone cells

Tetrachromacy is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye. Organisms with tetrachromacy are called tetrachromats.

<span class="mw-page-title-main">Cone cell</span> Photoreceptor cells responsible for color vision made to function in bright light

Cone cells, or cones, are photoreceptor cells in the retinas of vertebrate eyes including the human eye. They respond differently to light of different wavelengths, and the combination of their responses is responsible for color vision. Cones function best in relatively bright light, called the photopic region, as opposed to rod cells, which work better in dim light, or the scotopic region. Cone cells are densely packed in the fovea centralis, a 0.3 mm diameter rod-free area with very thin, densely packed cones which quickly reduce in number towards the periphery of the retina. Conversely, they are absent from the optic disc, contributing to the blind spot. There are about six to seven million cones in a human eye, with the highest concentration being towards the macula.

Dichromacy is the state of having two types of functioning photoreceptors, called cone cells, in the eyes. Organisms with dichromacy are called dichromats. Dichromats can match any color they see with a mixture of no more than two pure spectral lights. By comparison, trichromats need three pure spectral lights to represent their visible gamut, and tetrachromats need four.

<span class="mw-page-title-main">Monochromacy</span> Type of color vision

Monochromacy is the ability of organisms or machines to perceive only light intensity, without respect to spectral composition (color). Organisms with monochromacy are called monochromats.

<span class="mw-page-title-main">Photopsin</span> Photoreceptor proteins in the cone cells of the retina

Photopsins are the photoreceptor proteins found in the cone cells of the retina that are the basis of color vision. Photopsins bind the chromophore retinal to form iodopsins. Iodopsins are used in daylight vision and are analogous to rhodopsin that is used in night vision.

<span class="mw-page-title-main">Melanopsin</span> Mammalian protein found in Homo sapiens

Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene Opn4. In the mammalian retina, there are two additional categories of opsins, both involved in the formation of visual images: rhodopsin and photopsin in the rod and cone photoreceptor cells, respectively.

<span class="mw-page-title-main">Opsin</span> Class of light-sensitive proteins

Animal opsins are a G-protein-coupled receptors a group of proteins made light-sensitive via the chromophore retinal. Most prominently, they are found in photoreceptor cells of the retina. Five classical groups of opsins are involved in vision, mediating the conversion of a photon of light into an electrochemical signal, the first step in the visual transduction cascade. Another opsin found in the mammalian retina, melanopsin, is involved in circadian rhythms and pupillary reflex but not in vision. Humans have in total nine opsins. Beside vision and light perception, opsins may also sense temperature, sound, and chemicals.

A locus control region (LCR) is a long-range cis-regulatory element that enhances expression of linked genes at distal chromatin sites. It functions in a copy number-dependent manner and is tissue-specific, as seen in the selective expression of β-globin genes in erythroid cells. Expression levels of genes can be modified by the LCR and gene-proximal elements, such as promoters, enhancers, and silencers. The LCR functions by recruiting chromatin-modifying, coactivator, and transcription complexes. Its sequence is conserved in many vertebrates, and conservation of specific sites may suggest importance in function. It has been compared to a super-enhancer as both perform long-range cis regulation via recruitment of the transcription complex.

<span class="mw-page-title-main">RRH</span>

Peropsin, a visual pigment-like receptor, is a protein that in humans is encoded by the RRH gene. It belongs like other animal opsins to the G protein-coupled receptors. Even so, the first peropsins were already discovered in mouse and human in 1997, not much is known about them.

OPN5 Protein-coding gene in the species Homo sapiens

Opsin-5, also known as G-protein coupled receptor 136 or neuropsin is a protein that in humans is encoded by the OPN5 gene. Opsin-5 is a member of the opsin subfamily of the G protein-coupled receptors. It is a photoreceptor protein sensitive to ultraviolet (UV) light. The OPN5 gene was discovered in mouse and human genomes and its mRNA expression was also found in neural tissues. Neuropsin is bistable at 0 °C and activates a UV-sensitive, heterotrimeric G protein Gi-mediated pathway in mammalian and avian tissues.

<span class="mw-page-title-main">OPN1MW</span> Protein-coding gene in the species Homo sapiens

Green-sensitive opsin is a protein that in humans is encoded by the OPN1MW gene. OPN1MW2 is a similar opsin.

<span class="mw-page-title-main">OPN1LW</span> Protein-coding gene in the species Homo sapiens

OPN1LW is a gene on the X chromosome that encodes for long wave sensitive (LWS) opsin, or red cone photopigment. It is responsible for perception of visible light in the yellow-green range on the visible spectrum. The gene contains 6 exons with variability that induces shifts in the spectral range. OPN1LW is subject to homologous recombination with OPN1MW, as the two have very similar sequences. These recombinations can lead to various vision problems, such as red-green colourblindness and blue monochromacy. The protein encoded is a G-protein coupled receptor with embedded 11-cis-retinal, whose light excitation causes a cis-trans conformational change that begins the process of chemical signalling to the brain.

<span class="mw-page-title-main">Evolution of color vision in primates</span> Loss and regain of colour vision during the evolution of primates

The evolution of color vision in primates is highly unusual compared to most eutherian mammals. A remote vertebrate ancestor of primates possessed tetrachromacy, but nocturnal, warm-blooded, mammalian ancestors lost two of four cones in the retina at the time of dinosaurs. Most teleost fish, reptiles and birds are therefore tetrachromatic while most mammals are strictly dichromats, the exceptions being some primates and marsupials, who are trichromats, and many marine mammals, who are monochromats.

Color vision, a proximate adaptation of the vision sensory modality, allows for the discrimination of light based on its wavelength components.

Gene therapy for color blindness is an experimental gene therapy of the human retina aiming to grant typical trichromatic color vision to individuals with congenital color blindness by introducing typical alleles for opsin genes. Animal testing for gene therapy began in 2007 with a 2009 breakthrough in squirrel monkeys suggesting an imminent gene therapy in humans. While the research into gene therapy for red-green colorblindness has lagged since then, successful human trials are ongoing for achromatopsia. Congenital color vision deficiency affects upwards of 200 million people in the world, which represents a large demand for this gene therapy.

Jeremy Nathans is a professor of molecular biology and genetics at Johns Hopkins University. He is also a member of the National Academy of Sciences and an investigator of the Howard Hughes Medical Institute.

The evolution of human colour vision in Homo sapiens produced a trichromatic view of the world in comparison to a majority of other mammals that only have a dichromatic view. Early human ancestors are believed to have viewed the world using UV vision as far back as 90 million years ago. It is thought that the shift to trichromatic vision capabilities and the ability to see blue light have evolved as an adaptive trait over time.

Blue cone monochromacy (BCM) is an inherited eye disease that causes severely impaired color discrimination, low vision, nystagmus and photophobia due to the absence of functionality of red (L) and green (M) cone photoreceptor cells in the retina. This form of retinal disorder is a recessive X-linked disease and manifests its symptoms in early infancy.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000128617 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000058831 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Nathans J, Thomas D, Hogness DS (Apr 1986). "Molecular genetics of human color vision: the genes encoding blue, green, and red pigments". Science. 232 (4747): 193–202. CiteSeerX   10.1.1.461.5915 . doi:10.1126/science.2937147. PMID   2937147.
  6. Fitzgibbon J, Appukuttan B, Gayther S, Wells D, Delhanty J, Hunt DM (Feb 1994). "Localisation of the human blue cone pigment gene to chromosome band 7q31.3-32". Hum Genet. 93 (1): 79–80. doi:10.1007/bf00218919. PMID   8270261. S2CID   43548690.
  7. "Entrez Gene: OPN1SW opsin 1 (cone pigments), short-wave-sensitive (color blindness, tritan)".

Further reading