GPR42

Last updated
GPR42
Identifiers
Aliases GPR42 , FFAR1L, FFAR3L, GPR41L, GPR42P, G protein-coupled receptor 42 (gene/pseudogene), G protein-coupled receptor 42
External IDs OMIM: 603822 GeneCards: GPR42
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005305
NM_001348195

n/a

RefSeq (protein)

NP_001335124

n/a

Location (UCSC) Chr 19: 35.37 – 35.37 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Putative G-protein coupled receptor 42 (previously termed FFAR1L, FFAR3L, GPR41L, and GPR42P) is a protein that in humans is encoded by the GPR42 gene. [3] [4] The human GPR gene is located at the same site as the human FFAR1, FFAR, and FFAR3 genes, i.e., on the long (i.e., "q") arm of chromosome 19 at position 23.33 (notated as 19q23.33). This gene appears to be a segmental duplication of the FFAR3 gene. The human GPR42 gene codes for several proteins with a FFAR3-like structure but their expression in various cell types and tissues as well as their activities and functions have not yet been clearly defined in any scientific publication followed by PubMed as of 2023. [5] [6] [7] [8]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Hepatic lipase</span> Mammalian protein found in Homo sapiens

Hepatic lipase (HL), also called hepatic triglyceride lipase (HTGL) or LIPC (for "lipase, hepatic"), is a form of lipase, catalyzing the hydrolysis of triacylglyceride. Hepatic lipase is coded by chromosome 15 and its gene is also often referred to as HTGL or LIPC. Hepatic lipase is expressed mainly in liver cells, known as hepatocytes, and endothelial cells of the liver. The hepatic lipase can either remain attached to the liver or can unbind from the liver endothelial cells and is free to enter the body's circulation system. When bound on the endothelial cells of the liver, it is often found bound to heparan sulfate proteoglycans (HSPG), keeping HL inactive and unable to bind to HDL (high-density lipoprotein) or IDL (intermediate-density lipoprotein). When it is free in the bloodstream, however, it is found associated with HDL to maintain it inactive. This is because the triacylglycerides in HDL serve as a substrate, but the lipoprotein contains proteins around the triacylglycerides that can prevent the triacylglycerides from being broken down by HL.

Free fatty acid receptors (FFARs) are G-protein coupled receptors (GPRs). GPRs are a large family of receptors. They reside on their parent cells' surface membranes, bind any one of a specific set of ligands that they recognize, and thereby are activated to elicit certain types of responses in their parent cells. Humans express more than 800 different types of GPCRs. FFARs are GPCR that bind and thereby become activated by particular fatty acids. In general, these binding/activating fatty acids are straight-chain fatty acids consisting of a carboxylic acid residue, i.e., -COOH, attached to aliphatic chains, i.e. carbon atom chains of varying lengths with each carbon being bound to 1, 2 or 3 hydrogens. For example, propionic acid is a short-chain fatty acid consisting of 3 carbons (C's), CH3-CH2-COOH, and docosahexaenoic acid is a very long-chain polyunsaturated fatty acid consisting of 22 C's and six double bonds : CH3-CH2-CH1=CH1-CH2-CH1=CH1-CH2-CH1=CH1-CH2-CH1=CH1-CH2-CH1=CH1-CH2-CH1=CH1-CH2-CH2-COOH.

<span class="mw-page-title-main">G protein-coupled bile acid receptor</span> Protein-coding gene in the species Homo sapiens

The G protein-coupled bile acid receptor 1 (GPBAR1) also known G-protein coupled receptor 19 (GPCR19), membrane-type receptor for bile acids (M-BAR) or Takeda G protein-coupled receptor 5 (TGR5) as is a protein that in humans is encoded by the GPBAR1 gene.

<span class="mw-page-title-main">UCP3</span> Protein-coding gene in the species Homo sapiens

Mitochondrial uncoupling protein 3 is a protein that in humans is encoded by the UCP3 gene. The gene is located in chromosome (11q13.4) with an exon count of 7 and is expressed on the inner mitochondrial membrane. Uncoupling proteins transfer anions from the inner mitochondrial membrane to the outer mitochondrial membrane, thereby separating oxidative phosphorylation from synthesis of ATP, and dissipating energy stored in the mitochondrial membrane potential as heat. Uncoupling proteins also reduce generation of reactive oxygen species.

<span class="mw-page-title-main">FABP2</span> Protein-coding gene in the species Homo sapiens

Fatty acid-binding protein 2 (FABP2), also known as Intestinal-type fatty acid-binding protein (I-FABP), is a protein that in humans is encoded by the FABP2 gene.

<span class="mw-page-title-main">Formyl peptide receptor 2</span> Protein-coding gene in the species Homo sapiens

N-formyl peptide receptor 2 (FPR2) is a G-protein coupled receptor (GPCR) located on the surface of many cell types of various animal species. The human receptor protein is encoded by the FPR2 gene and is activated to regulate cell function by binding any one of a wide variety of ligands including not only certain N-Formylmethionine-containing oligopeptides such as N-Formylmethionine-leucyl-phenylalanine (FMLP) but also the polyunsaturated fatty acid metabolite of arachidonic acid, lipoxin A4 (LXA4). Because of its interaction with lipoxin A4, FPR2 is also commonly named the ALX/FPR2 or just ALX receptor.

<span class="mw-page-title-main">SCP2</span> Protein

Non-specific lipid-transfer protein also known as sterol carrier protein 2 (SCP-2) or propanoyl-CoA C-acyltransferase is a protein that in humans is encoded by the SCP2 gene.

<span class="mw-page-title-main">LPAR4</span> Protein-coding gene in the species Homo sapiens

Lysophosphatidic acid receptor 4 also known as LPA4 is a protein that in humans is encoded by the LPAR4 gene. LPA4 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">Free fatty acid receptor 3</span> Protein-coding gene in the species Homo sapiens

Free fatty acid receptor 3 protein is a G protein coupled receptor that in humans is encoded by the FFAR3 gene. GPRs reside on cell surfaces, bind specific signaling molecules, and thereby are activated to trigger certain functional responses in their parent cells. FFAR3 is a member of the free fatty acid receptor group of GPRs that includes FFAR1, FFAR2, and FFAR4. All of these FFARs are activated by fatty acids. FFAR3 and FFAR2 are activated by certain short-chain fatty acids (SC-FAs), i.e., fatty acids consisting of 2 to 6 carbon atoms whereas FFFAR1 and FFAR4 are activated by certain fatty acids that are 6 to more than 21 carbon atoms long. Hydroxycarboxylic acid receptor 2 is also activated by a SC-FA that activate FFAR3, i.e., butyric acid.

<span class="mw-page-title-main">Free fatty acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Free fatty acid receptor 2 (FFAR2), also termed G-protein coupled receptor 43 (GPR43), is a rhodopsin-like G-protein coupled receptor. It is coded by the FFAR2 gene. In humans, the FFAR2 gene is located on the long arm of chromosome 19 at position 13.12. Like other GPCRs, FFAR2s reside on the surface membrane of cells and when bond to one of their activating ligands regulate the function of their parent cells. FFAR2 is a member of a small family of structurally and functionally related GPRs termed free fatty acid receptors (FFARs). This family includes three other receptors which, like FFAR2, are activated by certain fatty acids: FFAR1, FFAR3 (GPR41), and FFAR4 (GPR120). FFAR2 and FFAR3 are activated by short-chain fatty acids whereas FFAR1 and FFAR4 are activated by long-chain fatty acids.

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 3</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 3 (HCA3), also known as niacin receptor 2 (NIACR2) and GPR109B, is a protein which in humans is encoded by the HCAR3 gene. HCA3, like the other hydroxycarboxylic acid receptors HCA1 and HCA2, is a Gi/o-coupled G protein-coupled receptor (GPCR). The primary endogenous agonists of HCA3 are 3-hydroxyoctanoic acid and kynurenic acid. HCA3 is also a low-affinity biomolecular target for niacin (aka nicotinic acid).

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 1</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 1 (HCA1), formerly known as G protein-coupled receptor 81 (GPR81), is a protein that in humans is encoded by the HCAR1 gene. HCA1, like the other hydroxycarboxylic acid receptors HCA2 and HCA3, is a Gi/o-coupled G protein-coupled receptor (GPCR). The primary endogenous agonist of HCA1 is lactic acid (and its conjugate base, lactate). More recently, 3,5-dihydroxybenzoic acid has been reported to activate HCA1.

<span class="mw-page-title-main">GPR63</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 63 is a protein that in humans is encoded by the GPR63 gene.

<span class="mw-page-title-main">GPR110</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 110 is a protein that in humans is encoded by the GPR110 gene. This gene encodes a member of the adhesion-GPCR receptor family. Family members are characterized by an extended extracellular region with a variable number of N-terminal protein modules coupled to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 2 (HCA2), also known as GPR109A and niacin receptor 1 (NIACR1), is a protein which in humans is encoded (its formation is directed) by the HCAR2 gene and in rodents by the Hcar2 gene. The human HCAR2 gene is located on the long (i.e., "q") arm of chromosome 12 at position 24.31 (notated as 12q24.31). Like the two other hydroxycarboxylic acid receptors, HCA1 and HCA3, HCA2 is a G protein-coupled receptor (GPCR) located on the surface membrane of cells. HCA2 binds and thereby is activated by D-β-hydroxybutyric acid (hereafter termed β-hydroxybutyric acid), butyric acid, and niacin (also known as nicotinic acid). β-Hydroxybutyric and butyric acids are regarded as the endogenous agents that activate HCA2. Under normal conditions, niacin's blood levels are too low to do so: it is given as a drug in high doses in order to reach levels that activate HCA2.

<span class="mw-page-title-main">Oxoeicosanoid receptor 1</span> Protein-coding gene in the species Homo sapiens

Oxoeicosanoid receptor 1 (OXER1) also known as G-protein coupled receptor 170 (GPR170) is a protein that in humans is encoded by the OXER1 gene located on human chromosome 2p21; it is the principal receptor for the 5-Hydroxyicosatetraenoic acid family of carboxy fatty acid metabolites derived from arachidonic acid. The receptor has also been termed hGPCR48, HGPCR48, and R527 but OXER1 is now its preferred designation. OXER1 is a G protein-coupled receptor (GPCR) that is structurally related to the hydroxy-carboxylic acid (HCA) family of G protein-coupled receptors whose three members are HCA1 (GPR81), HCA2, and HCA3 ; OXER1 has 30.3%, 30.7%, and 30.7% amino acid sequence identity with these GPCRs, respectively. It is also related to the recently defined receptor, GPR31, for the hydroxyl-carboxy fatty acid 12-HETE.

<span class="mw-page-title-main">60S ribosomal protein L7a</span> Protein found in humans

60S ribosomal protein L7a is a protein that in humans is encoded by the RPL7A gene.

<span class="mw-page-title-main">FABP1</span> Protein-coding gene in the species Homo sapiens

FABP1 is a human gene coding for the protein product FABP1. It is also frequently known as liver-type fatty acid-binding protein (LFABP).

<span class="mw-page-title-main">KRT23</span> Protein-coding gene in the species Homo sapiens

Keratin, type I cytoskeletal 23 is a protein that in humans is encoded by the KRT23 gene.

<span class="mw-page-title-main">Long-chain fatty acid transport protein 1</span> Protein-coding gene in the species Homo sapiens

Long-chain fatty acid transport protein 1 (FATP1) is a protein that in humans is encoded by the SLC27A1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000126251 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Sawzdargo M, George SR, Nguyen T, Xu S, Kolakowski LF, O'Dowd BF (Nov 1997). "A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1". Biochem Biophys Res Commun. 239 (2): 543–7. doi:10.1006/bbrc.1997.7513. PMID   9344866.
  4. "Entrez Gene: GPR42 G protein-coupled receptor 42".
  5. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (March 2003). "The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids". The Journal of Biological Chemistry. 278 (13): 11312–9. doi: 10.1074/jbc.M211609200 . PMID   12496283.
  6. Liaw CW, Connolly DT (November 2009). "Sequence polymorphisms provide a common consensus sequence for GPR41 and GPR42". DNA and Cell Biology. 28 (11): 555–60. doi:10.1089/dna.2009.0916. PMID   19630535.
  7. Puhl HL, Won YJ, Lu VB, Ikeda SR (August 2015). "Human GPR42 is a transcribed multisite variant that exhibits copy number polymorphism and is functional when heterologously expressed". Scientific Reports. 5: 12880. Bibcode:2015NatSR...512880P. doi:10.1038/srep12880. PMC   4531286 . PMID   26260360.
  8. Pluznick JL (April 2017). "Microbial Short-Chain Fatty Acids and Blood Pressure Regulation". Current Hypertension Reports. 19 (4): 25. doi:10.1007/s11906-017-0722-5. PMC   5584783 . PMID   28315048.

Further reading