A biobank is a type of biorepository that stores biological samples (usually human) for use in research. Biobanks have become an important resource in medical research, supporting many types of contemporary research like genomics and personalized medicine.
Biobanks can give researchers access to data representing a large number of people. Samples in biobanks and the data derived from those samples can often be used by multiple researchers for cross purpose research studies. For example, many diseases are associated with single-nucleotide polymorphisms. Genome-wide association studies using data from tens or hundreds of thousands of individuals can identify these genetic associations as potential disease biomarkers. Many researchers struggled to acquire sufficient samples prior to the advent of biobanks.
Biobanks have provoked questions on privacy, research ethics, and medical ethics. Viewpoints on what constitutes appropriate biobank ethics diverge. However, a consensus has been reached that operating biobanks without establishing carefully considered governing principles and policies could be detrimental to communities that participate in biobank programs.
The term "biobank" first appeared in the late 1990s and is a broad term that has evolved in recent years. [1] [2] One definition is "an organized collection of human biological material and associated information stored for one or more research purposes." [3] [4] Collections of plant, animal, microbe, and other nonhuman materials may also be described as biobanks but in some discussions the term is reserved for human specimens. [3]
Biobanks usually incorporate cryogenic storage facilities for the samples. [5] They may range in size from individual refrigerators to warehouses, and are maintained by institutions such as hospitals, universities, nonprofit organizations, and pharmaceutical companies. [5]
Biobanks may be classified by purpose or design. Disease-oriented biobanks usually have a hospital affiliation through which they collect samples representing a variety of diseases, perhaps to look for biomarkers affiliated with disease. [6] [7] Population-based biobanks need no particular hospital affiliation because they take samples from large numbers of all kinds of people, perhaps to look for biomarkers for disease susceptibility in a general population. [8]
In 2008, United States researchers stored 270 million specimens in biobanks, and the rate of new sample collection was 20 million per year. [11] These numbers represent a fundamental worldwide change in the nature of research between the time when such numbers of samples could not be used and the time when researchers began demanding them. [11] Collectively, researchers began to progress beyond single-center research centers to a next-generation qualitatively different research infrastructure. [12] Some of the challenges raised by the advent of biobanks are ethical, legal, and social issues pertaining to their existence, including the fairness of collecting donations from vulnerable populations, providing informed consent to donors, the logistics of data disclosure to participants, the right to ownership of intellectual property, and the privacy and security of donors who participate. [11] Because of these new problems, researchers and policymakers began to require new systems of research governance. [12]
Many researchers have identified biobanking as a key area for infrastructure development in order to promote drug discovery and drug development. [3]
By the late 1990s, scientists realized that although many diseases are caused at least in part by a genetic component, few diseases originate from a single defective gene; most genetic diseases are caused by multiple genetic factors on multiple genes. [13] Because the strategy of looking only at single genes was ineffective for finding the genetic components of many diseases, and because new technology made the cost of examining a single gene versus doing a genome-wide scan about the same, scientists began collecting much larger amounts of genetic information when any was to be collected at all. [13] At the same time technological advances also made it possible for wide sharing of information, so when data was collected, many scientists doing genetics work found that access to data from genome-wide scans collected for any one reason would actually be useful in many other types of genetic research. [13] Whereas before data usually stayed in one laboratory, now scientists began to store large amounts of genetic data in single places for community use and sharing. [13]
An immediate result of doing genome-wide scans and sharing data was the discovery of many single-nucleotide polymorphisms, with an early success being an improvement from the identification of about 10,000 of these with single-gene scanning and before biobanks versus 500,000 by 2007 after the genome-wide scanning practice had been in place for some years. [13] A problem remained; this changing practice allowed the collection of genotype data, but it did not simultaneously come with a system to gather the related phenotype data. [13] Whereas genotype data comes from a biological specimen like a blood sample, phenotype data has to come from examining a specimen donor with an interview, physical assessment, review of medical history, or some other process which could be difficult to arrange. [13] Even when this data was available, there were ethical uncertainties about the extent to which and the ways in which patient rights could be preserved by connecting it to genotypic data. [13] The institution of the biobank began to be developed to store genotypic data, associate it with phenotypic data, and make it more widely available to researchers who needed it. [13]
Biobanks including genetic testing samples have historically been composed of a majority of samples from individuals from European ancestry. [14] Diversification of biobank samples is needed and researchers should consider the factors effecting the underrepresented populations. [15] [16]
This section needs expansion. You can help by adding to it. (December 2020) |
In November 2020 scientists began collecting living fragments, tissue and DNA samples of the endangered corals from the Great Barrier Reef for a precautionary biobank for potential future restoration and rehabilitation activities. [17] A few months earlier another Australian team of researchers reported that they evolved such corals to be more heat-resistant. [18]
The specimens stored by a biobank and made available to researchers are taken by sampling. Specimen types include blood, urine, skin cells, organ tissue, and other materials. Increasingly, methods for sampling tissue specimens are becoming more targeted, sometimes involving the use of MRI to determine which specific areas of tissue should be sampled. [19] [20] The biobank keeps these specimens in good condition until a researcher needs them to conduct a test, do an experiment, or perform an analysis.[ citation needed ]
Biobanks, like other DNA databases, must carefully store and document access to samples and donor information. [21] The samples must be maintained reliably with minimal deterioration over time, and they must be protected from physical damage, both accidental and intentional. The registration of each sample entering and exiting the system is centrally stored, usually on a computer-based system that can be backed up frequently. [21] The physical location of each sample is noted to allow the rapid location of specimens. Archival systems de-identify samples to respect the privacy of donors and allow blinding of researchers to analysis. [21] The database, including clinical data, is kept separately with a secure method to link clinical information to tissue samples. [21] Room temperature storage of samples is sometimes used, and was developed in response to perceived disadvantages of low-temperature storage, such as costs and potential for freezer failure. [21] Current systems are small and are capable of storing nearly 40,000 samples in about one tenth of the space required by a −80 °C (−112 °F) freezer. Replicates or split samples are often stored in separate locations for security. [21]
One controversy of large databases of genetic material is the question of ownership of samples. As of 2007, Iceland had three different laws on ownership of the physical samples and the information they contain. [22] Icelandic law holds that the Icelandic government has custodial rights of the physical samples themselves while the donors retain ownership rights. [22] In contrast, Tonga and Estonia give ownership of biobank samples to the government, but their laws include strong protections of donor rights. [22]
The key event which arises in biobanking is when a researcher wants to collect a human specimen for research. When this happens, some issues which arise include the following: right to privacy for research participants, ownership of the specimen and its derived data, the extent to which the donor can share in the return of the research results, and the extent to which a donor is able to consent to be in a research study. [23]
With respect to consent, the main issue is that biobanks usually collect samples and data for multiple future research purposes and it is not feasible to obtain specific consent for all possible future research. It has been discussed that one-off consent or a broad consent for various research purposes may not suffice ethical and legal requirements. [24] [25] Dynamic consent is an approach to consent that may be better suited to biobanking, because it enables ongoing engagement and communication between the researchers and sample/data donors over time.
There is no internationally accepted set of governance guidelines that are designed to work with biobanks. Biobanks typically try to adapt to the broader recommendations that are internationally accepted for human subject research and change guidelines as they become updated. For many types of research and particularly medical research, oversight comes at the local level from an institutional review board. Institutional review boards typically enforce standards set by their country's government. To different extents, the law used by different countries is often modeled on biobank governance recommendations that have been internationally proposed.
Some examples of organizations that participated in creating written biobanking guidelines are the following: [2] World Medical Association, Council for International Organizations of Medical Sciences, Council of Europe, Human Genome Organisation, World Health Organization, and UNESCO. The International Society for Biological and Environmental Repositories (ISBER) is a global biobanking organization which creates opportunities for networking, education, and innovations and harmonizes approaches to evolving challenges in biological and environmental repositories. ISBER connects repositories globally through best practices. The ISBER Best Practices, Fourth Edition was launched on January 31, 2018 with a LN2 addendum that was launched early May 2019. [26]
In 1998, the Icelandic Parliament passed the Act on Health Sector Database. This act allowed for the creation of a national biobank in that country. In 1999, the United States National Bioethics Advisory Commission issued a report containing policy recommendations about handling human biological specimens. [11] In 2005, the United States National Cancer Institute founded the Office of Biorepositories and Biospecimen Research so that it could have a division to establish a common database and standard operating procedures for its partner organizations with biospecimen collections. [11] In 2006, the Council of the European Union adopted a policy on human biological specimens, which was novel for discussing issues unique to biobanks. [11]
Researchers have called for a greater critical examination of the economic aspects of Biobanks, particularly those facilitated by the state. [27] National biobanks are often funded by public/private partnerships, with finance provided by any combination of national research councils, medical charities, pharmaceutical company investment, and biotech venture capital. [28] In this way, national biobanks enable an economic relationship mediated between states, national populations, and commercial entities. It has been illustrated that there is a strong commercial incentive underlying the systematic collection of tissue material. This can be seen particularly in the field of genomic research where population sized study lends itself more easily toward diagnostic technologies rather than basic etiological studies. [29] Considering the potential for substantial profit, researchers Mitchell and Waldby [27] argue that because biobanks enroll large numbers of the national population as productive participants, who allow their bodies and prospective medical histories to create a resource with commercial potential, their contribution should be seen as a form of "clinical labor" and therefore participants should also benefit economically.
There have been cases when the ownership of stored human specimens have been disputed and taken to court. Some cases include:
Genetic testing, also known as DNA testing, is used to identify changes in DNA sequence or chromosome structure. Genetic testing can also include measuring the results of genetic changes, such as RNA analysis as an output of gene expression, or through biochemical analysis to measure specific protein output. In a medical setting, genetic testing can be used to diagnose or rule out suspected genetic disorders, predict risks for specific conditions, or gain information that can be used to customize medical treatments based on an individual's genetic makeup. Genetic testing can also be used to determine biological relatives, such as a child's biological parentage through DNA paternity testing, or be used to broadly predict an individual's ancestry. Genetic testing of plants and animals can be used for similar reasons as in humans, to gain information used for selective breeding, or for efforts to boost genetic diversity in endangered populations.
The Human Genome Diversity Project (HGDP) was started by Stanford University's Morrison Institute in 1990s along with collaboration of scientists around the world. It is the result of many years of work by Luigi Cavalli-Sforza, one of the most cited scientists in the world, who has published extensively in the use of genetics to understand human migration and evolution. The HGDP data sets have often been cited in papers on such topics as population genetics, anthropology, and heritable disease research.
UK Biobank is a large long-term biobank study in the United Kingdom (UK) which is investigating the respective contributions of genetic predisposition and environmental exposure to the development of disease. It began in 2006. UK Biobank has been cited as an important resource for cancer research.
The Clinical Laboratory Improvement Amendments (CLIA) of 1988 are United States federal regulatory standards that apply to all clinical laboratory testing performed on humans in the United States, except clinical trials and basic research.
Genetic discrimination occurs when people treat others differently because they have or are perceived to have a gene mutation(s) that causes or increases the risk of an inherited disorder. It may also refer to any and all discrimination based on the genotype of a person rather than their individual merits, including that related to race, although the latter would be more appropriately included under racial discrimination. Some legal scholars have argued for a more precise and broader definition of genetic discrimination: "Genetic discrimination should be defined as when an individual is subjected to negative treatment, not as a result of the individual's physical manifestation of disease or disability, but solely because of the individual's genetic composition." Genetic Discrimination is considered to have its foundations in genetic determinism and genetic essentialism, and is based on the concept of genism, i.e. distinctive human characteristics and capacities are determined by genes.
Biomedical tissue is biological tissue used for organ transplantation and medical research, particularly cancer research. When it is used for research it is a biological specimen.
Genetic Alliance is a nonprofit organization, founded in 1986 by Joan O. Weiss, working with Victor A. McKusick, to advocate for health benefits in the accelerating field of genomic research. This organization is a network of over 1,000 disease advocacy organizations, universities, government organizations, private companies, and public policy organizations. They aim to advance genetic research agendas toward health benefit by engaging a broad range of stakeholders, including healthcare providers, researchers, industry professionals, public policy leaders, as well as individuals, families and communities. They create programs using a collaborative approach, and aim to increase efficiency and reduce obstacles in genetic research, while ensuring that voices from the involved disease communities are heard. They also promote public policies to advance healthcare. Genetic Alliance provides technical support and informational resources to guide disease-specific advocacy organizations in being their own research advocates. They also maintain a biobank as a central storage facility for several organizations who otherwise would not have the infrastructure to maintain their own repository.
The 1000 Genomes Project (1KGP), taken place from January 2008 to 2015, was an international research effort to establish the most detailed catalogue of human genetic variation at the time. Scientists planned to sequence the genomes of at least one thousand anonymous healthy participants from a number of different ethnic groups within the following three years, using advancements in newly developed technologies. In 2010, the project finished its pilot phase, which was described in detail in a publication in the journal Nature. In 2012, the sequencing of 1092 genomes was announced in a Nature publication. In 2015, two papers in Nature reported results and the completion of the project and opportunities for future research.
A biorepository is a facility that collects, catalogs, and stores samples of biological material for laboratory research. Biorepositories collect and manage specimens from animals, plants, and other living organisms. Biorepositories store many different types of specimens, including samples of blood, urine, tissue, cells, DNA, RNA, and proteins. If the samples are from people, they may be stored with medical information along with written consent to use the samples in laboratory studies.
A tumor bank is sometimes also referred to as a Tissue Bank, since normal tissues for research are also often collected. However, this function is distinct from a Tissue Bank which collects and harvests human cadaver tissue for medical research and education, and banks which store Biomedical tissue for organ transplantation.
Generation Scotland is a biobank, a resource of biological samples and information on health and lifestyle from thousands of volunteer donors in Scotland.
A biological specimen is a biological laboratory specimen held by a biorepository for research. Such a specimen would be taken by sampling so as to be representative of any other specimen taken from the source of the specimen. When biological specimens are stored, ideally they remain equivalent to freshly-collected specimens for the purposes of research.
Biobank ethics refers to the ethics pertaining to all aspects of biobanks. The issues examined in the field of biobank ethics are special cases of clinical research ethics.
Return of results is a concept in research ethics which describes the extent of the duty of a researcher to reveal and explain the results of research to a research participant.
Privacy for research participants is a concept in research ethics which states that a person in human subject research has a right to privacy when participating in research. Some typical scenarios this would apply to include, or example, a surveyor doing social research conducts an interview with a participant, or a medical researcher in a clinical trial asks for a blood sample from a participant to see if there is a relationship between something which can be measured in blood and a person's health. In both cases, the ideal outcome is that any participant can join the study and neither the researcher nor the study design nor the publication of the study results would ever identify any participant in the study. Thus, the privacy rights of these individuals can be preserved.
Dynamic consent is an approach to informed consent that enables on-going engagement and communication between individuals and the users and custodians of their data. It is designed to address the many issues that are raised by the use of digital technologies in research and clinical care that enable the wide-scale use, linkage, analysis and integration of diverse datasets and the use of AI and big data analyses. These issues include how to obtain informed consent in a rapidly-changing environment; growing expectations that people should know how their data is being used; increased legal and regulatory requirements for the management of secondary use of data in biobanks and other medical research infrastructure. The approach started to be implemented in 2007 by an Italian group who introduced the ways to have an ongoing process of interaction between researcher and participant where "technology now allows the establishment of dynamic participant–researcher partnerships." The use of digital interfaces in this way was first described as 'Dynamic Consent' in the EnCoRe project. Dynamic Consent therefore describes a personalised, digital interface that enables two-way communication between participants and researchers and is a practical example of how software can be developed to give research participants greater understanding and control over how their data is used. It also enables clinical trial managers, researchers and clinicians to know what type of consent is attached to the use of data they hold and to have an easy way to seek a new consent if the use of the data changes. It is able to support greater accountability and transparency, streamlining consent processes to enable compliance with regulatory requirements.
Genetic privacy involves the concept of personal privacy concerning the storing, repurposing, provision to third parties, and displaying of information pertaining to one's genetic information. This concept also encompasses privacy regarding the ability to identify specific individuals by their genetic sequence, and the potential to gain information on specific characteristics about that person via portions of their genetic information, such as their propensity for specific diseases or their immediate or distant ancestry.
DNA encryption is the process of hiding or perplexing genetic information by a computational method in order to improve genetic privacy in DNA sequencing processes. The human genome is complex and long, but it is very possible to interpret important, and identifying, information from smaller variabilities, rather than reading the entire genome. A whole human genome is a string of 3.2 billion base paired nucleotides, the building blocks of life, but between individuals the genetic variation differs only by 0.5%, an important 0.5% that accounts for all of human diversity, the pathology of different diseases, and ancestral story. Emerging strategies incorporate different methods, such as randomization algorithms and cryptographic approaches, to de-identify the genetic sequence from the individual, and fundamentally, isolate only the necessary information while protecting the rest of the genome from unnecessary inquiry. The priority now is to ascertain which methods are robust, and how policy should ensure the ongoing protection of genetic privacy.
Giuseppe Merla is an Italian scientist who is a Full Professor of Molecular Biology at University of Naples Federico II, Naples, Italy and medical geneticist at Casa Sollievo della Sofferenza in San Giovanni Rotondo, Italy. He is the Managing Director of Fondazione Telethon-Genomic and Genetics Disorders Biobank, a member of EuroBioBank at the Casa Sollievo della Sofferenza Hospital. Merla and his team led the discovery of a new rare genetic syndrome intellectual development disorder with cardiac arrhythmia and the gene responsible for it. Merla is also known for his extensive research on Kabuki Syndrome. He has been declared as the Ambassador of Kabuki syndrome and received the 2019 Ambassador Day award at the Royal Villa of Monza.