Biological specimen

Last updated
Biological specimens in an elementary school science lab. banggwahu sueob.jpg
Biological specimens in an elementary school science lab.

A biological specimen (also called a biospecimen) is a biological laboratory specimen held by a biorepository for research. Such a specimen would be taken by sampling so as to be representative of any other specimen taken from the source of the specimen. When biological specimens are stored, ideally they remain equivalent to freshly-collected specimens for the purposes of research.

Contents

Human biological specimens are stored in a type of biorepository called a biobank, and the science of preserving biological specimens is most active in the field of biobanking.

Quality control

Setting broad standards for quality of biological specimens was initially an underdeveloped aspect of biobank growth. [1] There is currently discussion on what standards should be in place and who should manage those standards. Since many organizations set their own standards and since biobanks are necessarily used by multiple organizations and typically are driven towards expansion, the harmonization of standard operating procedures for lab practices are a high priority. [1] The procedures have to be evidence-based and will change with time as new research and technology becomes available. [1]

Policy makers

Some progress for the creation of policy-making organizations include the National Cancer Institute's 2005 creation of the Office of Biobanking and Biospecimen Research (OBBR) [1] and the annual Biospecimen Research Network Symposia. [2] The International Society for Biological and Environmental Repositories, International Agency for Research on Cancer, Organisation for Economic Co-operation and Development, and the Australasian Biospecimen Network have also proposed policies and standards. [1] In 2008 AFNOR, a French standardization organization, published the first biobank-specific quality standard. [1] Aspects of ISO 9000 have been applied to biobanks. [1]

Quality goals

Quality criteria for specimens depends on the study being considered and there is not a universal standard specimen type. [1] DNA integrity is an important factor for studies which involve whole genome amplification. [3] RNA integrity is critical for some studies and can be assessed by gel electrophoresis. [4] Also biobanks, which do specimen storage, cannot take full responsibility for specimen integrity, because before they take custody of samples someone must collect and process them and effects such as RNA degradation are more likely to occur from delayed sample processing than inadequate storage. [5]

Samples stored

Biorepositories store various types of specimens.[ citation needed ] Different specimens are useful for different purposes.[ citation needed ]

Biobank specimens
specimenusesextraction techniquestoragecharacteristics
cheek tissue DNA profiling buccal swab participants can collect themselves; can be collected by mail; so easy to collect that informed consent may be insufficiently addressed
whole blood venipuncture requires phlebotomist to collect
Dried blood spot gives high quality DNA and RNA Fingerstick stores easily for years at room temperature
organ tissuegives high quality DNA, RNA, Mitochondrial DNA, and source of disease Biopsy many uses shared with blood; also suitable for proteomic analysis; may be difficult to obtain
Plasma limited DNA and RNA content Blood plasma fractionation requires phlebotomist to collect
Urine marker for some diagnostic tests Urination non-invasive
Feces marker for some diagnostic tests Stool sample non-invasive
Skin Mostly used by forensic teams investigating criminal casesin criminal cases, collected without consent of donor
Hair Mostly used by forensic teams investigating criminal cases Hair analysis in criminal cases, collected without consent of donor

Storage techniques

Many specimens in biobanks are cryopreserved.[ citation needed ] Other specimens are stored in other ways. [6]

Techniques associated with biobanks

Some of the laboratory techniques associated with biological specimen storage include phenol-chloroform extraction, PCR, and RFLP.[ citation needed ]

See also

Related Research Articles

Cryobiology is the branch of biology that studies the effects of low temperatures on living things within Earth's cryosphere or in science. The word cryobiology is derived from the Greek words κρῧος [kryos], "cold", βίος [bios], "life", and λόγος [logos], "word". In practice, cryobiology is the study of biological material or systems at temperatures below normal. Materials or systems studied may include proteins, cells, tissues, organs, or whole organisms. Temperatures may range from moderately hypothermic conditions to cryogenic temperatures.

Specimen may refer to:

<span class="mw-page-title-main">ATCC (company)</span>

ATCC or the American Type Culture Collection is a nonprofit organization which collects, stores, and distributes standard reference microorganisms, cell lines and other materials for research and development. Established in 1925 to serve as a national center for depositing and distributing microbiological specimens, ATCC has since grown to distribute in over 150 countries. It is now the largest general culture collection in the world.

Biomedical tissue is biological tissue used for organ transplantation and medical research, particularly cancer research. When it is used for research it is a biological specimen.

<span class="mw-page-title-main">Genetic Alliance</span>

Genetic Alliance is a nonprofit organization, founded in 1986 by Joan O. Weiss, working with Victor A. McKusick, to advocate for health benefits in the accelerating field of genomic research. This organization is a network of over 1,000 disease advocacy organizations, universities, government organizations, private companies, and public policy organizations. They aim to advance genetic research agendas toward health benefit by engaging a broad range of stakeholders, including healthcare providers, researchers, industry professionals, public policy leaders, as well as individuals, families and communities. They create programs using a collaborative approach, and aim to increase efficiency and reduce obstacles in genetic research, while ensuring that voices from the involved disease communities are heard. They also promote public policies to advance healthcare. Genetic Alliance provides technical support and informational resources to guide disease-specific advocacy organizations in being their own research advocates. They also maintain a biobank as a central storage facility for several organizations who otherwise would not have the infrastructure to maintain their own repository.

Dried blood spot testing (DBS) is a form of biosampling where blood samples are blotted and dried on filter paper. The dried samples can easily be shipped to an analytical laboratory and analysed using various methods such as DNA amplification or HPLC.

The Cancer Genome Atlas (TCGA) is a project to catalogue the genetic mutations responsible for cancer using genome sequencing and bioinformatics. The overarching goal was to apply high-throughput genome analysis techniques to improve the ability to diagnose, treat, and prevent cancer through a better understanding of the genetic basis of the disease.

<span class="mw-page-title-main">Biobank</span> Repository of biological samples used for research

A biobank is a type of biorepository that stores biological samples for use in research. Biobanks have become an important resource in medical research, supporting many types of contemporary research like genomics and personalized medicine.

A biorepository is a facility that collects, catalogs, and stores samples of biological material for laboratory research. Biorepositories collect and manage specimens from animals, plants, and other living organisms. Biorepositories store many different types of specimens, including samples of blood, urine, tissue, cells, DNA, RNA, and proteins. If the samples are from people, they may be stored with medical information along with written consent to use the samples in laboratory studies.

A Tumor Bank, A Tumor Bank is sometimes also referred to as a Tissue Bank, since normal tissues for research are also often collected. However, this function is distinct from a Tissue Bank which collects and harvests human cadaver tissue for medical research and education, and banks which store Biomedical tissue for organ transplantation.

John Quackenbush is an American computational biologist and genome scientist. He is a professor of biostatistics and computational biology and a professor of cancer biology at the Dana–Farber Cancer Institute (DFCI), as well as the director of its Center for Cancer Computational Biology (CCCB). Quackenbush also holds an appointment as a professor of computational biology and bioinformatics in the Department of Biostatistics at the Harvard School of Public Health.

Biobank ethics refers to the ethics pertaining to all aspects of biobanks. The issues examined in the field of biobank ethics are special cases of clinical research ethics.

The International Society for Biological and Environmental Repositories (ISBER) is a professional society of individuals and organizations involved in biospecimen banking. Its main activities include creating educational and training opportunities, providing an online forum service, showcasing related products and services, and creating opportunities for networking. It also has published works.

The Office of Biorepositories and Biospecimen Research is a division of the United States National Cancer Institute which was formed in 2005 to promote and develop biobank infrastructure.

Biomatrica is a United States-based biotechnology company, and subsidiary of Exact Sciences Corporation, that develops chemicals for ambient temperature preservation of biological materials for the purpose of expanding the availability and accuracy of medical diagnostics and research. Specifically, the company focuses on improving the stability of biological materials, such as DNA, RNA, proteins, cells from patient samples used in research, and diagnostic testing reagents. Company scientists have developed alternatives to existing preservation technologies, such as cold storage and lyophilization (freeze-drying), to prevent degradation of perishable biological materials. Biomatrica's technologies are used in applications such as pre-analytic sample collection, diagnostic assays, biobanking, forensics, and basic research.

The Coriell Institute for Medical Research is an independent, non-profit biomedical research center dedicated to the study of the human genome. Coriell features programs in biobanking, personalized medicine, cell biology, cytogenetics, genotyping, and induced pluripotent stem cell science. Located in downtown Camden, New Jersey, the Institute has partnered with several prominent state and national health leaders, including Cooper University Hospital, the Cooper Medical School of Rowan University, the United States Air Force, the University of Pennsylvania, and Stanford University.

<span class="mw-page-title-main">Giuseppe Merla</span> Italian scientist and geneticist

Giuseppe Merla is an Italian scientist who is a Full Professor of Molecular Biology at University of Naples Federico II, Naples, Italy and medical geneticist at Casa Sollievo della Sofferenza in San Giovanni Rotondo, Italy. He is the Managing Director of Fondazione Telethon-Genomic and Genetics Disorders Biobank, a member of EuroBioBank at the Casa Sollievo della Sofferenza Hospital. Merla and his team led the discovery of a new rare genetic syndrome intellectual development disorder with cardiac arrhythmia and the gene responsible for it. Merla is also known for his extensive research on Kabuki Syndrome. He has been declared as the Ambassador of Kabuki syndrome and received the 2019 Ambassador Day award at the Royal Villa of Monza.

Ann G. Clarke is a British immunologist and co-founder of the Frozen Ark project.

<span class="mw-page-title-main">Marianne K. Henderson</span> American biomedical scientist

Marianne Krall Henderson is an American biomedical scientist specialized in biobanks and biorepositories. She is a senior advisor on biospecimen resources at the National Cancer Institute. Henderson was president of the International Society for Biological and Environmental Repositories from 2011 to 2012.

References

  1. 1 2 3 4 5 6 7 8 Hewitt, R. E. (2011). "Biobanking: The foundation of personalized medicine". Current Opinion in Oncology. 23 (1): 112–119. doi:10.1097/CCO.0b013e32834161b8. PMID   21076300.
  2. Moore, H. M.; Compton, C. C.; Lim, M. D.; Vaught, J.; Christiansen, K. N.; Alper, J. (2009). "2009 Biospecimen Research Network Symposium: Advancing Cancer Research Through Biospecimen Science". Cancer Research. 69 (17): 6770–6772. doi:10.1158/0008-5472.CAN-09-1795. PMC   2782665 . PMID   19706749.
  3. Yuille, M.; Illig, T.; Hveem, K.; Schmitz, G.; Hansen, J.; Neumaier, M.; Tybring, G.; Wichmann, E.; Ollier, B. (2010). "Laboratory Management of Samples in Biobanks: European Consensus Expert Group Report". Biopreservation and Biobanking. 8 (1): 65–9. doi:10.1089/bio.2010.8102. PMID   24836342.
  4. Guerin, J. S.; Murray, D. W.; McGrath, M. M.; Yuille, M. A.; McPartlin, J. M.; Doran, P. P. (2010). "Molecular Medicine Ireland Guidelines for Standardized Biobanking". Biopreservation and Biobanking. 8 (1): 3–63. doi:10.1089/bio.2010.8101. PMID   24836341.
  5. Barnes, M. G.; Grom, A. A.; Griffin, T. A.; Colbert, R. A.; Thompson, S. D. (2010). "Gene Expression Profiles from Peripheral Blood Mononuclear Cells Are Sensitive to Short Processing Delays". Biopreservation and Biobanking. 8 (3): 153–162. doi:10.1089/bio.2010.0009. PMC   3129811 . PMID   21743826.
  6. Elliott, P.; Peakman, T. C.; Uk, B. (2008). "The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine". International Journal of Epidemiology. 37 (2): 234–244. doi: 10.1093/ije/dym276 . PMID   18381398.