Seratrodast

Last updated
Seratrodast
Seratrodast.svg
Clinical data
Trade names Bronica in Japan, Changnuo, Mai Xu Jia, Quan Kang Nuo in China and as Seradair in India. . [1]
AHFS/Drugs.com International Drug Names
Routes of
administration
By mouth (tablets, granules)
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Protein binding >96%
Elimination half-life 22 hours
Identifiers
  • 7-Phenyl-7-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dien-1-yl)heptanoic acid
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
CompTox Dashboard (EPA)
ECHA InfoCard 100.220.176 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C22H26O4
Molar mass 354.446 g·mol−1
3D model (JSmol)
  • CC1=C(C(=O)C(=C(C1=O)C)C(CCCCCC(=O)O)C2=CC=CC=C2)C
  • InChI=1S/C22H26O4/c1-14-15(2)22(26)20(16(3)21(14)25)18(17-10-6-4-7-11-17)12-8-5-9-13-19(23)24/h4,6-7,10-11,18H,5,8-9,12-13H2,1-3H3,(H,23,24) X mark.svgN
  • Key:ZBVKEHDGYSLCCC-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Seratrodast (development name, AA-2414; marketed originally as Bronica) [2] is a thromboxane A2 (TXA2) receptor (TP receptor) antagonist used primarily in the treatment of asthma. [3] [4] It was the first TP receptor antagonist that was developed as an anti-asthmatic drug and received marketing approval in Japan in 1997. [5] As of 2017 seratrodast was marketed as Bronica in Japan, and as Changnuo, Mai Xu Jia, Quan Kang Nuo in China. [1]

Contents

Unlike thromboxane synthase inhibitors such as ozagrel, seratrodast does not affect thrombus formation, time to occlusion and bleeding time. [6] Seratrodast has no effect on prothrombin time and activated partial thromboplastin time, thus ruling out any action on blood coagulation cascade. [7]

Medical uses

Seratrodast is used to treat asthma. [8] [9]

There are no adequate and well-controlled studies of seratrodast in pregnant women. The drug should be used in pregnancy only if the potential benefits justify the risk to the fetus. [9] Seratrodast should not be used during lactation. [9]

The safety and efficacy of seratrodast has not been established in children (<18 years of age). [9]

Contraindications and interactions

Seratrodast should not be used in people with liver disease. [9]

Use with paracetamol or with cephem antibiotics increases the risk of liver damage. Use with aspirin increases the bioavailability of seratrodast. [9]

Adverse effects

The most frequently observed (0.1 to 5%) adverse reactions include elevated transaminases, nausea, loss of appetite, stomach discomfort, abdominal pain, diarrhea, constipation, dry mouth, taste disturbance, drowsiness, headache, dizziness, palpitations and malaise. [9] Less than 0.1% of patients experienced vomiting, thrombocytopenia, epistaxis, bleeding tendency, insomnia, tremor, numbness, hot flushes and edema. [9] All the adverse reactions reported were of mild to moderate severity, and resolved when the drug was discontinued. [9]

Pharmacology

Thromboxane A2 (TXA2) is generated in the lungs of people with asthma, and when it signals through the thromboxane receptor it causes bronchoconstriction, vasoconstriction, mucous secretion, and airway hyper-responsiveness. Seratrodast inhibits the activity of the thromboxane receptor, blocking the effects of TXA2. [10]

Pharmacokinetics

The pharmacokinetics of seratrodast have been studied in Japanese and Caucasian, including Indian, healthy volunteers. [11] [12] [13] [14] The plasma concentrations of seratrodast increase with increasing doses. The absorption of seratrodast is relatively rapid with maximum plasma concentrations of 4.6–6 μg/ml obtained in 3 to 4 hours. [11] Steady state plasma concentrations of seratrodast are reached within 4–5 days. [13] Seratrodast is slowly cleared, mainly by hepatic biotransformation. The drug shows biexponential decay in plasma profiles with a mean elimination half-life of 22 hours. [11] [13] Approximately 20% of the administered dose is recovered in the urine, with 60% of the urinary recovery being in the form of conjugates [12]

Chemistry

Seratrodast synth.png

Seratrodast can be prepared in five steps starting from pimelic acid monoester. [15]

History

Seratrodast was the first thromboxane receptor antagonist to reach the market as a treatment for asthma; it was approved in Japan in 1997. [8]

Society and culture

As of 2017 seratrodast was marketed as Bronica in Japan, Changnuo, Mai Xu Jia, Quan Kang Nuo in China and as Seretra & Seradair in India. [1]

Research

Seratrodast was studied in perennial allergic rhinitis, chronic bronchitis and chronic pulmonary emphysema but efforts to bring the drug to market in those indications was abandoned around 2000. [2]

Related Research Articles

<span class="mw-page-title-main">Prostacyclin</span> Chemical compound

Prostacyclin (also called prostaglandin I2 or PGI2) is a prostaglandin member of the eicosanoid family of lipid molecules. It inhibits platelet activation and is also an effective vasodilator.

<span class="mw-page-title-main">Thromboxane</span> Group of lipids

Thromboxane is a member of the family of lipids known as eicosanoids. The two major thromboxanes are thromboxane A2 and thromboxane B2. The distinguishing feature of thromboxanes is a 6-membered ether-containing ring.

<span class="mw-page-title-main">Cetirizine</span> Antihistamine medication

Cetirizine is a second-generation antihistamine used to treat allergic rhinitis, dermatitis, and urticaria (hives). It is taken by mouth. Effects generally begin within thirty minutes and last for about a day. The degree of benefit is similar to other antihistamines such as diphenhydramine, which is a first-generation antihistamine.

<span class="mw-page-title-main">Cimetidine</span> Medication

Cimetidine, sold under the brand name Tagamet among others, is a histamine H2 receptor antagonist that inhibits stomach acid production. It is mainly used in the treatment of heartburn and peptic ulcers.

<span class="mw-page-title-main">Zafirlukast</span> Chemical compound

Zafirlukast is an orally administered leukotriene receptor antagonist (LTRA) used for the chronic treatment of asthma. While zafirlukast is generally well tolerated, headache and stomach upset often occur. Some rare side effects can occur, which can be life-threatening, such as liver failure. Churg-Strauss syndrome has been associated with zafirlukast, but the relationship isn't thought to be causative in nature. Overdoses of zafirlukast tend to be self-limiting.

<span class="mw-page-title-main">Doxepin</span> Medication to treat depressive disorder, anxiety disorders, chronic hives, and trouble sleeping

Doxepin is a medication belonging to the tricyclic antidepressant (TCA) class of drugs used to treat major depressive disorder, anxiety disorders, chronic hives, and insomnia. For hives it is a less preferred alternative to antihistamines. It has a mild to moderate benefit for sleeping problems. It is used as a cream for itchiness due to atopic dermatitis or lichen simplex chronicus.

<span class="mw-page-title-main">Bisoprolol</span> Beta-1 selective adrenenergic blocker medication used to treat cardiovascular diseases

Bisoprolol, sold under the brand name Zebeta among others, is a beta blocker medication used for heart diseases. This includes tachyarrhythmias, high blood pressure, chest pain from not enough blood flow to the heart, and heart failure. It is taken by mouth.

<span class="mw-page-title-main">Thromboxane receptor</span> Mammalian protein found in Homo sapiens

The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2.

<span class="mw-page-title-main">Thromboxane A2</span> Chemical compound

Thromboxane A2 (TXA2) is a type of thromboxane that is produced by activated platelets during hemostasis and has prothrombotic properties: it stimulates activation of new platelets as well as increases platelet aggregation. This is achieved by activating the thromboxane receptor, which results in platelet-shape change, inside-out activation of integrins, and degranulation. Circulating fibrinogen binds these receptors on adjacent platelets, further strengthening the clot. Thromboxane A2 is also a known vasoconstrictor and is especially important during tissue injury and inflammation. It is also regarded as responsible for Prinzmetal's angina.

Prostaglandin DP<sub>2</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human protein encoded by the PTGDR2 gene and GPR44. DP2 has also been designated as CD294 (cluster of differentiation 294). It is a member of the class of prostaglandin receptors which bind with and respond to various prostaglandins. DP2 along with Prostaglandin DP1 receptor are receptors for prostaglandin D2 (PGD2). Activation of DP2 by PGD2 or other cognate receptor ligands has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.

<span class="mw-page-title-main">Ramatroban</span> Chemical compound

Ramatroban (INN) is a thromboxane receptor antagonist.

<span class="mw-page-title-main">Deramciclane</span> Chemical compound

Deramciclane (EGIS-3886) is a non-benzodiazepine-type anxiolytic drug to treat various types of anxiety disorders. Deramciclane is a unique alternative to current anxiolytics on the market because it has a novel chemical structure and target. It acts as an antagonist at the 5-HT2A receptor, as an inverse agonist at the 5-HT2C receptor, and as a GABA reuptake inhibitor. The two serotonin receptors are G protein-coupled receptors and are two of the main excitatory serotonin receptor types. Their excitation has been implicated in anxiety and mood. Deramciclane does not affect CYP3A4 activity in metabolizing other drugs, but it is a weak inhibitor of CYP2D6. Some studies also show the drug to have moderate affinity to dopamine D2 receptors and low affinity to dopamine receptor D1. Researchers are looking for alternatives to benzodiazepines for anxiolytic use because benzodiazepine drugs have sedative and muscle relaxant side effects.

<span class="mw-page-title-main">Ifetroban</span> Chemical compound

Ifetroban is a potent and selective thromboxane receptor antagonist. It has been studied in animal models for the treatment of cancer metastasis, myocardial ischemia, hypertension, stroke, thrombosis, cardiomyopathy, and for its effects on platelets. Clinical trials are evaluating the therapeutic safety and efficacy of oral ifetroban capsules for the treatment of cancer metastasis, cardiovascular disease, aspirin exacerbated respiratory disease, systemic sclerosis, and Duchenne muscular dystrophy.

<span class="mw-page-title-main">Terbogrel</span> Chemical compound

Terbogrel (INN) is an experimental drug that has been studied for its potential to prevent the vasoconstricting and platelet-aggregating action of thromboxanes. Terbogrel is an orally available thromboxane A2 receptor antagonist and a thromboxane A synthase inhibitor. The drug was developed by Boehringer Ingelheim.

<span class="mw-page-title-main">12-Hydroxyheptadecatrienoic acid</span> Chemical compound

12-Hydroxyheptadecatrienoic acid (also termed 12-HHT, 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid, or 12(S)-HHTrE) is a 17 carbon metabolite of the 20 carbon polyunsaturated fatty acid, arachidonic acid. It was discovered and structurally defined in 1973 by P. Wlodawer, Bengt I. Samuelsson, and M. Hamberg, as a product of arachidonic acid metabolism made by microsomes (i.e. endoplasmic reticulum) isolated from sheep seminal vesicle glands and by intact human platelets. 12-HHT is less ambiguously termed 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid to indicate the S stereoisomerism of its 12-hydroxyl residue and the Z, E, and E cis-trans isomerism of its three double bonds. The metabolite was for many years thought to be merely a biologically inactive byproduct of prostaglandin synthesis. More recent studies, however, have attached potentially important activity to it.

<span class="mw-page-title-main">Eluxadoline</span> Chemical compound

Eluxadoline, sold under the brand names Viberzi and Truberzi, is a medication taken by mouth for the treatment of diarrhea and abdominal pain in individuals with diarrhea-predominant irritable bowel syndrome (IBS-D). It was approved for use in the United States in 2015. The drug originated from Janssen Pharmaceutica and was developed by Actavis.

<span class="mw-page-title-main">Setipiprant</span> Chemical compound

Setipiprant (INN; developmental code names ACT-129968, KYTH-105) is an investigational drug developed for the treatment of asthma and scalp hair loss. It was originally developed by Actelion and acts as a selective, orally available antagonist of the prostaglandin D2 receptor 2 (DP2). The drug is being developed as a novel treatment for male pattern baldness by Allergan.

<span class="mw-page-title-main">Daridorexant</span> Medication used to treat insomnia

Daridorexant, sold under the brand name Quviviq, is an orexin antagonist medication which is used for the treatment of insomnia. Daridorexant is taken by mouth.

Prostaglandin inhibitors are drugs that inhibit the synthesis of prostaglandin in human body. There are various types of prostaglandins responsible for different physiological reactions such as maintaining the blood flow in stomach and kidney, regulating the contraction of involuntary muscles and blood vessels, and act as a mediator of inflammation and pain. Cyclooxygenase (COX) and Phospholipase A2 are the major enzymes involved in prostaglandin production, and they are the drug targets for prostaglandin inhibitors. There are mainly 2 classes of prostaglandin inhibitors, namely non- steroidal anti- inflammatory drugs (NSAIDs) and glucocorticoids. In the following sections, the medical uses, side effects, contraindications, toxicity and the pharmacology of these prostaglandin inhibitors will be discussed.

<span class="mw-page-title-main">Furegrelate</span> Chemical compound

Furegrelate, also known as 5-(3-pyridinylmethyl)benzofurancarboxylic acid, is a chemical compound with thromboxane enzyme inhibiting properties that was originally developed by Pharmacia Corporation as a drug to treat arrhythmias, ischaemic heart disorders, and thrombosis but was discontinued. It is commercially available in the form furegrelate sodium salt.

References

  1. 1 2 3 "Seratrodast international brands". Drugs.com. Retrieved 8 March 2017.
  2. 1 2 "Seratrodast". AdisInsight. Retrieved 8 March 2017.
  3. Endo S, Akiyama K (November 1996). "[Thromboxane A2 receptor antagonist in asthma therapy]". Nihon Rinsho. Japanese Journal of Clinical Medicine (in Japanese). 54 (11): 3045–8. PMID   8950952.
  4. Hada S, Hashizume M, Nishii S, Yoshioka F, Yasunaga K (January 1993). "[Study on the inhibitory effect of AA-2414 on platelet aggregation and its clinical effect in asthmatic patients]". Arerugi [Allergy] (in Japanese). 42 (1): 18–25. PMID   8457165.
  5. Dogné JM, de Leval X, Benoit P, Delarge J, Masereel B (2002). "Thromboxane A2 inhibition: therapeutic potential in bronchial asthma". American Journal of Respiratory Medicine. 1 (1): 11–7. doi:10.1007/bf03257158. PMID   14720071. S2CID   40324562.
  6. Dogné JM, Hanson J, de Leval X, Kolh P, Tchana-Sato V, de Leval L, et al. (May 2004). "Pharmacological characterization of N-tert-butyl-N'-[2-(4'-methylphenylamino)-5-nitrobenzenesulfonyl]urea (BM-573), a novel thromboxane A2 receptor antagonist and thromboxane synthase inhibitor in a rat model of arterial thrombosis and its effects on bleeding time". The Journal of Pharmacology and Experimental Therapeutics. 309 (2): 498–505. doi:10.1124/jpet.103.063610. PMID   14742735. S2CID   46723447.
  7. Samara EE (1996). "Seratrodast (AA-2414)—A Novel Thromboxane-A2 Receptor Antagonist". Cardiovascular Drug Reviews. 14 (3): 272–85. doi: 10.1111/j.1527-3466.1996.tb00231.x .
  8. 1 2 Rolin S, Masereel B, Dogné JM (March 2006). "Prostanoids as pharmacological targets in COPD and asthma". European Journal of Pharmacology. 533 (1–3): 89–100. doi:10.1016/j.ejphar.2005.12.058. PMID   16458293.
  9. 1 2 3 4 5 6 7 8 9 "医療用医薬品 : ブロニカ (Japanese label)" (in Japanese). KEGG. October 2016. Retrieved 8 March 2017.
  10. Dogné JM, de Leval X, Benoit P, Rolin S, Pirotte B, Masereel B (February 2002). "Therapeutic potential of thromboxane inhibitors in asthma". Expert Opinion on Investigational Drugs. 11 (2): 275–81. doi:10.1517/13543784.11.2.275. PMID   11829716. S2CID   19276801.
  11. 1 2 3 An open-labeled, randomized, cross-over bioequivalence study of Seratrodast 80mg under fasting condition. Data on file (appears on website on Seretra)
  12. 1 2 Hiraga K, Tateno M (1993). "The clinical phase I study of AA-2414, a thromboxane A, receptor antagonist – repeated-dose study at 160 mg once daily for 7 days". Clin Pharmacol. 9 (Suppl. 8): 41–55.
  13. 1 2 3 Hussein Z, Samara E, Locke CS, Orchard MA, Ringham GL, Granneman GR (April 1994). "Characterization of the pharmacokinetics and pharmacodynamics of a new oral thromboxane A2-receptor antagonist AA-2414 in normal subjects: population analysis". Clinical Pharmacology and Therapeutics. 55 (4): 441–50. doi:10.1038/clpt.1994.54. PMID   8162671. S2CID   20801213.
  14. Samara EE, Qian J, Locke C, Dean R, Killian A, Granneman GR (1996). "Single-dose and steady-state pharmacokinetics of seratrodast in healthy male and female volunteers". Pharm Res. 13 (Suppl. 9).
  15. Shiraishi M, Kato K, Terao S, Ashida Y, Terashita Z, Kito G (September 1989). "Quinones. 4. Novel eicosanoid antagonists: synthesis and pharmacological evaluation". Journal of Medicinal Chemistry. 32 (9): 2214–21. doi:10.1021/jm00129a030. PMID   2769691.