Arachidonate 5-lipoxygenase inhibitor

Last updated

Arachidonate 5-lipoxygenase inhibitors are compounds that slow or stop the action of the arachidonate 5-lipoxygenase (5-lipoxygenase or 5-LOX) enzyme, which is responsible for the production of inflammatory leukotrienes. The overproduction of leukotrienes is a major cause of inflammation in asthma, allergic rhinitis, and osteoarthritis. [1] [2]

Contents

Examples of 5-LOX inhibitors include the pharmaceutical drugs meclofenamate sodium, zileuton [3] [4] and the natural products myxochelins/pseudochelin [5] [6] as well as nordihydroguaiaretic acid (NDGA). [7]

Some chemicals found in trace amounts in food, as well as some dietary supplements, have been shown to inhibit 5-LOX; these include baicalein, caffeic acid, curcumin, [3] hyperforin and St John's wort. [8] [9] [10]

Acetyl-keto-beta-boswellic acid (AKBA), one of the bioactive boswellic acids found in Boswellia serrata (Indian Frankincense) has been found to inhibit 5-lipoxygenase strongly as an allosteric inhibitor. [7] Boswellia administration has been shown to reduce brain edema in patients irradiated for brain tumor and it's believed to be due to 5-lipoxygenase inhibition. [11] [12]

See also

Related Research Articles

<i>Hypericum perforatum</i> Flowering plant in the St Johns wort family Hypericaceae

Hypericum perforatum, commonly known as St John's wort, is a flowering plant in the family Hypericaceae. It is a perennial plant that grows up to one meter tall, with many yellow flowers that have clearly visible black glands around their edges, long stamens, and three pistils. Probably a hybrid between the closely related H. attenuatum and H. maculatum that originated in Siberia, the species is now found worldwide. It is native to temperate regions across Eurasia and North Africa, and has been introduced to East Asia, Australia, New Zealand, and parts of North and South America. In many areas where it is not native, H. perforatum is considered a noxious weed. It densely covers open areas to the exclusion of native plants, and is poor grazing material. As such, methods for biocontrol have been introduced in an attempt to slow or reverse the spread of the species.

<span class="mw-page-title-main">Eicosanoid</span> Class of compounds

Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the proximity of their cells of origin. Some eicosanoids, such as prostaglandins, may also have endocrine roles as hormones to influence the function of distant cells.

<span class="mw-page-title-main">Leukotriene</span> Class of inflammation mediator molecules

Leukotrienes are a family of eicosanoid inflammatory mediators produced in leukocytes by the oxidation of arachidonic acid (AA) and the essential fatty acid eicosapentaenoic acid (EPA) by the enzyme arachidonate 5-lipoxygenase.

<span class="mw-page-title-main">Hypericin</span> Chemical compound

Hypericin is a naphthodianthrone, an anthraquinone derivative which, together with hyperforin, is one of the principal active constituents of Hypericum. Hypericin is believed to act as an antibiotic, antiviral and non-specific kinase inhibitor. Hypericin may inhibit the action of the enzyme dopamine β-hydroxylase, leading to increased dopamine levels, although thus possibly decreasing norepinephrine and epinephrine.

<span class="mw-page-title-main">Lipoxin</span> Acronym for lipoxygenase interaction product

A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. They are categorized as nonclassic eicosanoids and members of the specialized pro-resolving mediators (SPMs) family of polyunsaturated fatty acid (PUFA) metabolites. Like other SPMs, LXs form during, and then act to resolve, inflammatory responses. Initially, two lipoxins were identified, lipoxin A4 (LXA4) and LXB4, but more recent studies have identified epimers of these two LXs: the epi-lipoxins, 15-epi-LXA4 and 15-epi-LXB4 respectively.

<span class="mw-page-title-main">Zileuton</span> Chemical compound

Zileuton (trade name Zyflo) is an orally active inhibitor of 5-lipoxygenase, and thus inhibits leukotrienes (LTB4, LTC4, LTD4, and LTE4) formation, used for the maintenance treatment of asthma. Zileuton was introduced in 1996 by Abbott Laboratories and is now marketed in two formulations by Cornerstone Therapeutics Inc. under the brand names Zyflo and Zyflo CR. The original immediate-release formulation, Zyflo, is taken four times per day. The extended-release formulation, Zyflo CR, is taken twice daily.

<span class="mw-page-title-main">Hyperforin</span> Chemical compound

Hyperforin is a phytochemical produced by some of the members of the plant genus Hypericum, notably Hypericum perforatum. Hyperforin may be involved in the pharmacological effects of St. John's wort, specifically in its antidepressant effects.

<span class="mw-page-title-main">Boswellic acid</span> Chemical compound

Boswellic acids are a series of pentacyclic terpenoid molecules that are produced by plants in the genus Boswellia. Like many other terpenes, boswellic acids appear in the resin of the plant that exudes them; it is estimated that they make up 30% of the resin of Boswellia serrata. While boswellic acids are a major component of the resin, the steam or hydro distilled frankincense essential oil does not contain any boswellic acid as these components are non-volatile and too large to come over in the steam distillation process.

An antileukotriene, also known as leukotriene modifier and leukotriene receptor antagonist, is a medication which functions as a leukotriene-related enzyme inhibitor or leukotriene receptor antagonist and consequently opposes the function of these inflammatory mediators; leukotrienes are produced by the immune system and serve to promote bronchoconstriction, inflammation, microvascular permeability, and mucus secretion in asthma and COPD. Leukotriene receptor antagonists are sometimes colloquially referred to as leukasts.

Arachidonate 5-lipoxygenase, also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme that in humans is encoded by the ALOX5 gene. Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (EFA) substrates into leukotrienes as well as a wide range of other biologically active products. ALOX5 is a current target for pharmaceutical intervention in a number of diseases.

<span class="mw-page-title-main">ALOX15</span> Lipoxygenase found in humans

ALOX15 is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function

<span class="mw-page-title-main">Cysteinyl leukotriene receptor 1</span> Protein-coding gene in humans

Cysteinyl leukotriene receptor 1, also termed CYSLTR1, is a receptor for cysteinyl leukotrienes (LT). CYSLTR1, by binding these cysteinyl LTs contributes to mediating various allergic and hypersensitivity reactions in humans as well as models of the reactions in other animals.

Leukotriene B<sub>4</sub> receptor 2 Protein-coding gene in humans

Leukotriene B4 receptor 2, also known as BLT2, BLT2 receptor, and BLTR2, is an Integral membrane protein that is encoded by the LTB4R2 gene in humans and the Ltbr2 gene in mice.

<span class="mw-page-title-main">5-Hydroxyeicosatetraenoic acid</span> Chemical compound

5-Hydroxyeicosatetraenoic acid (5-HETE, 5(S)-HETE, or 5S-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. It is produced by diverse cell types in humans and other animal species. These cells may then metabolize the formed 5(S)-HETE to 5-oxo-eicosatetraenoic acid (5-oxo-ETE), 5(S),15(S)-dihydroxyeicosatetraenoic acid (5(S),15(S)-diHETE), or 5-oxo-15-hydroxyeicosatetraenoic acid (5-oxo-15(S)-HETE).

<span class="mw-page-title-main">COTL1</span> Protein-coding gene in humans

Coactosin-like protein is a protein that in humans is encoded by the COTL1 gene.

<span class="mw-page-title-main">Adhyperforin</span> Chemical compound

Adhyperforin is a phytochemical found in the members of the plant genus Hypericum including St. John's Wort. It has a very similar pharmacological profile to hyperforin and acts as a TRPC6 ion channel activator, thereby inhibiting the reuptake of various neurotransmitters including serotonin, norepinephrine, dopamine, GABA, and glutamate. Adhyperforin is found in St. John's Wort in levels approximately 1/10 those of hyperforin.

<span class="mw-page-title-main">12-Hydroxyeicosatetraenoic acid</span> Chemical compound

12-Hydroxyeicosatetraenoic acid (12-HETE) is a derivative of the 20 carbon polyunsaturated fatty acid, arachidonic acid, containing a hydroxyl residue at carbon 12 and a 5Z,8Z,10E,14Z Cis–trans isomerism configuration (Z=cis, E=trans) in its four double bonds. It was first found as a product of arachidonic acid metabolism made by human and bovine platelets through their 12S-lipoxygenase (i.e. ALOX12) enzyme(s). However, the term 12-HETE is ambiguous in that it has been used to indicate not only the initially detected "S" stereoisomer, 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HETE or 12S-HETE), made by platelets, but also the later detected "R" stereoisomer, 12(R)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (also termed 12(R)-HETE or 12R-HETE) made by other tissues through their 12R-lipoxygenase enzyme, ALOX12B. The two isomers, either directly or after being further metabolized, have been suggested to be involved in a variety of human physiological and pathological reactions. Unlike hormones which are secreted by cells, travel in the circulation to alter the behavior of distant cells, and thereby act as Endocrine signalling agents, these arachidonic acid metabolites act locally as Autocrine signalling and/or Paracrine signaling agents to regulate the behavior of their cells of origin or of nearby cells, respectively. In these roles, they may amplify or dampen, expand or contract cellular and tissue responses to disturbances.

<span class="mw-page-title-main">Maresin</span> Chemical compound

Maresin 1 (MaR1 or 7R,14S-dihydroxy-4Z,8E,10E,12Z,16Z,19Z-docosahexaenoic acid) is a macrophage-derived mediator of inflammation resolution coined from macrophage mediator in resolving inflammation. Maresin 1, and more recently defined maresins, are 12-lipoxygenase-derived metabolites of the omega-3 fatty acid, docosahexaenoic acid (DHA), that possess potent anti-inflammatory, pro-resolving, protective, and pro-healing properties similar to a variety of other members of the specialized proresolving mediators (SPM) class of polyunsaturated fatty acid (PUFA) metabolites. SPM are dihydroxy, trihydroxy, and epoxy-hydroxy metabolites of long chain PUFA made by certain dioxygenase enzymes viz., cyclooxygenases and lipoxygenases. In addition to the maresins, this class of mediators includes: the 15-lipoxygenase (i.e. ALOX15 and/or possibly ALOX15B)-derived lipoxin A4 and B4 metabolites of the omega 6 fatty acid, arachidonic acid; the cyclooxygenase 2-derived resolvin E series metabolites of the omega 3 fatty acid, eicosapentaenoic acid; certain 15-lipoxygenase-derived resolvin D series metabolites of DHA; certain other 15-lipoxygenase-derived protectin D1 and related metabolites of DHA; and the more recently defined and therefore less fully studied 15-lipoxygenase-derived resolvin Dn-3DPA metabolites of the omega-3 fatty acid n-3 docosapentaenoic acid (n-3 DPA or clupanodonic acid), the cyclooxygenase 2-derived resolvin T metabolites of this clupanodonic acid, and the 15-lipoxygenase-derived products of the N-acetylated fatty acid amide of the DHA metabolite, docosahexaenoyl ethanolamide.

<span class="mw-page-title-main">Eoxin</span> Family of proinflammatory eicosanoids

Eoxins are proposed to be a family of proinflammatory eicosanoids. They are produced by human eosinophils, mast cells, the L1236 Reed–Sternberg cell line derived from Hodgkin's lymphoma, and certain other tissues. These cells produce the eoxins by initially metabolizing arachidonic acid, an omega-6 (ω-6) fatty acid, via any enzyme possessing 15-lipoxygenase activity. The product of this initial metabolic step, 15(S)-hydroperoxyeicosatetraenoic acid, is then converted to a series of eoxins by the same enzymes that metabolize the 5-lipoxygenase product of arachidonic acid metabolism, i.e. 5-Hydroperoxy-eicosatetraenoic acid to a series of leukotrienes. That is, the eoxins are 14,15-disubstituted analogs of the 5,6-disubstituted leukotrienes.

Cysteinyl-leukotriene type 1 receptor antagonists Class of drugs that hinder the action of leukotriene

Cysteinyl-leukotriene type 1 receptor antagonists, also known as CysLT1 antagonists, are a class of drugs that hinder the action of leukotriene by binding to the receptor with antagonistic action without having an agonistic effect. These drugs are used to treat asthma, relieve individuals of seasonal allergies rhinitis and prevention of exercise-induced bronchoconstriction. There are currently three different types of drugs within the CysLT1 family, zafirlukast which was first on the market being released in 1996, montelukast which was released in 1998 and pranlukast which was released in 2007.

References

  1. David L. Nelson, Michael M. Cox. Lehninger's Principles of Biochemistry, Fifth Edition. W.H. Freeman and Co., 2008, p. 359.
  2. Laufer, S (2003). "Role of eicosanoids in structural degradation in osteoarthritis". Curr Opin Rheumatol. 15 (5): 623–627. doi:10.1097/00002281-200309000-00017. PMID   12960491. S2CID   1103848.
  3. 1 2 Bishayee K, Khuda-Bukhsh AR (September 2013). "5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy". Acta Biochim. Biophys. Sin. (Shanghai). 45 (9): 709–719. doi: 10.1093/abbs/gmt064 . PMID   23752617.
  4. "Zyflo (Zileuton tablets)" (PDF). United States Food and Drug Administration. Cornerstone Therapeutics Inc. June 2012. p. 1. Retrieved 12 December 2014. Zileuton is a specific inhibitor of 5-lipoxygenase and thus inhibits leukotriene (LTB4, LTC4, LTD4, and LTE4) formation. Both the (R)-(+)- and (S)-(-)-enantiomers are pharmacologically active as 5-lipoxygenase inhibitors in in vitro systems. Leukotrienes are substances that induce numerous biological effects including augmentation of neutrophil and eosinophil migration, neutrophil and monocyte aggregation, leukocyte adhesion, increased capillary permeability, and smooth muscle contraction. These effects contribute to inflammation, edema, mucus secretion, and bronchoconstriction in the airways of asthmatic patients. Sulfido-peptide leukotrienes (LTC4, LTD4, LTE4, also known as the slow-releasing substances of anaphylaxis) and LTB4, a chemoattractant for neutrophils and eosinophils, can be measured in a number of biological fluids including bronchoalveolar lavage fluid (BALF) from asthmatic patients.
  5. Schieferdecker, Sebastian; König, Stefanie; Koeberle, Andreas; Dahse, Hans-Martin; Werz, Oliver; Nett, Markus (2015-02-27). "Myxochelins Target Human 5-Lipoxygenase". Journal of Natural Products. 78 (2): 335–338. doi:10.1021/np500909b. ISSN   0163-3864. PMID   25686392.
  6. Sester, Angela; Winand, Lea; Pace, Simona; Hiller, Wolf; Werz, Oliver; Nett, Markus (2019-09-27). "Myxochelin- and Pseudochelin-Derived Lipoxygenase Inhibitors from a Genetically Engineered Myxococcus xanthus Strain". Journal of Natural Products. 82 (9): 2544–2549. doi:10.1021/acs.jnatprod.9b00403. ISSN   0163-3864. PMID   31465225. S2CID   201675694.
  7. 1 2 Gilbert, Nathaniel C.; Gerstmeier, Jana; Schexnaydre, Erin E.; Börner, Friedemann; Garscha, Ulrike; Neau, David B.; Werz, Oliver; Newcomer, Marcia E. (July 2020). "Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products". Nature Chemical Biology. 16 (7): 783–790. doi:10.1038/s41589-020-0544-7. ISSN   1552-4450. PMC   7747934 . PMID   32393899.
  8. "Enzymes". Hyperforin. 3.6. University of Alberta. 30 June 2013. Retrieved 12 December 2014. Hyperforin is found in alcoholic beverages. Hyperforin is a constituent of Hypericum perforatum (St John's Wort) Hyperforin is a phytochemical produced by some of the members of the plant genus Hypericum, notably Hypericum perforatum (St John's wort). The structure of hyperforin was elucidated by a research group from the Shemyakin Institute of Bio-organic Chemistry (USSR Academy of Sciences in Moscow) and published in 1975. Hyperforin is a prenylated phloroglucinol derivative. Total synthesis of hyperforin has not yet been accomplished, despite attempts by several research groups. Hyperforin has been shown to exhibit anti-inflammatory, anti-tumor, antibiotic and anti-depressant functions
    Hammer KD, Hillwig ML, Solco AK, Dixon PM, Delate K, Murphy PA, Wurtele ES, Birt DF (2007). "Inhibition of prostaglandin E(2) production by anti-inflammatory hypericum perforatum extracts and constituents in RAW264.7 Mouse Macrophage Cells". J Agric Food Chem. 55 (18): 7323–31. doi:10.1021/jf0710074. PMC   2365463 . PMID   17696442.
    Sun F, Liu JY, He F, Liu Z, Wang R, Wang DM, Wang YF, Yang DP (2011). "In-vitro antitumor activity evaluation of hyperforin derivatives". J Asian Nat Prod Res. 13 (8): 688–99. doi:10.1080/10286020.2011.584532. PMID   21751836. S2CID   43743086.
    Hübner AT (2003). "Treatment with Hypericum perforatum L. does not trigger decreased resistance in Staphylococcus aureus against antibiotics and hyperforin". Phytomedicine. 10 (2–3): 206–8. doi:10.1078/094471103321659951. PMID   12725578.
    Muruganandam AV, Bhattacharya SK, Ghosal S (2001). "Antidepressant activity of hyperforin conjugates of the St. John's wort, Hypericum perforatum Linn.: an experimental study". Indian J Exp Biol. 39 (12): 1302–4. PMID   12018529.
    1. Arachidonate 5-lipoxygenase ...Specific function: Catalyzes the first step in leukotriene biosynthesis, and thereby plays a role in inflammatory processes ...
    2. Prostaglandin G/H synthase 1 ... General function: Involved in peroxidase activity
  9. de Melo MS, Quintans Jde S, Araújo AA, Duarte MC, Bonjardim LR, Nogueira PC, Moraes VR, de Araújo-Júnior JX, Ribeiro EA, Quintans-Júnior LJ (2014). "A systematic review for anti-inflammatory property of clusiaceae family: a preclinical approach". Evid Based Complement Alternat Med. 2014: 960258. doi: 10.1155/2014/960258 . PMC   4058220 . PMID   24976853. These researches are according to an investigation of the effect of H. perforatum on the NF-κB inflammation factor, conducted by Bork et al. (1999), in which hyperforin provided a potent inhibition of TNFα-induced activation of NF-κB [58]. Another important activity for hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase [59]. Moreover, this species attenuated the expression of iNOS in periodontal tissue, which may contribute to the attenuation of the formation of nitrotyrosine, an indication of nitrosative stress [26]. In this context, a combination of several active constituents of Hypericum species is the carrier of their anti-inflammatory activity.
  10. Wölfle U, Seelinger G, Schempp CM (February 2014). "Topical application of St. John's wort (Hypericum perforatum)". Planta Med. 80 (2–3): 109–20. doi: 10.1055/s-0033-1351019 . PMID   24214835. Anti-inflammatory mechanisms of hyperforin have been described as inhibition of cyclooxygenase-1 (but not COX-2) and 5-lipoxygenase at low concentrations of 0.3 μmol/L and 1.2 μmol/L, respectively [52], and of PGE2 production in vitro [53] and in vivo with superior efficiency (ED50 = 1 mg/kg) compared to indomethacin (5 mg/kg) [54]. Hyperforin turned out to be a novel type of 5-lipoxygenase inhibitor with high effectivity in vivo [55] and suppressed oxidative bursts in polymorphonuclear cells at 1.8 μmol/L in vitro [56]. Inhibition of IFN-γ production, strong downregulation of CXCR3 expression on activated T cells, and downregulation of matrix metalloproteinase 9 expression caused Cabrelle et al. [57] to test the effectivity of hyperforin in a rat model of experimental allergic encephalomyelitis (EAE). Hyperforin attenuated the symptoms significantly, and the authors discussed hyperforin as a putative therapeutic molecule for the treatment of autoimmune inflammatory diseases sustained by Th1 cells.
  11. Simon Kirste (2009). Antiödematöse Wirkung von Boswellia serrata auf dasStrahlentherapie - assoziierte Hirnödem (MD thesis). Albert-Ludwigs-Universität Freiburg im Breisgau via Deutsche National Bibliothek.
  12. Kirste S, Treier M, Wehrle SJ, Becker G, Abdel-Tawab M, Gerbeth K, et al. (2011). "Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: a prospective, randomized, placebo-controlled, double-blind pilot trial". Cancer. 117 (16): 3788–95. doi: 10.1002/cncr.25945 . PMID   21287538.