Clinical data | |
---|---|
AHFS/Drugs.com | International Drug Names |
Routes of administration | By mouth |
ATC code | |
Legal status | |
Legal status |
|
Identifiers | |
| |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.067.468 |
Chemical and physical data | |
Formula | C11H14N4O4 |
Molar mass | 266.257 g·mol−1 |
3D model (JSmol) | |
| |
| |
(verify) |
Doxofylline (also known as doxophylline) is a phosphodiesterase inhibiting bronchodilator used in the treatment of chronic respiratory diseases such as asthma [1] and COPD. [2] Like theophylline, it is a xanthine derivative. [3] [4]
Doxophylline is used to treat chronic respiratory diseases such as asthma [1] and COPD. [2]
In animal and human studies, it has shown similar efficacy to theophylline but with significantly fewer side effects. [5] In February 2014, the US FDA granted an orphan drug designation to doxofylline for the treatment of bronchiectasis following the submission of an application by Alitair Pharmaceuticals, in May 2013. [6] [7] [8]
Unlike other xanthines, doxofylline lacks any significant affinity for adenosine receptors and does not produce stimulant effects. This suggests that its antiasthmatic effects are mediated by another mechanism, perhaps its actions on phosphodiesterase. [1] From a pharmacokinetic point of view, doxofylline importantly differs from theophylline also because it lacks the ability to interfere with the cytochrome enzymes CYP1A2, CYP2E1 and CYP3A4, thus preventing significant interaction with other drugs metabolized via these pathways in the liver. [9] [10]
Concomitant treatment with certain other medications (including allopurinol, H2 receptor antagonists, lincosamide antibiotics, macrolide antibiotics, and propranolol) can decrease the hepatic clearance of doxofylline, which can result in increased serum levels of doxofylline.
It is marketed under many brand names worldwide, including: Xiva, An Li Nuo Er, An Sai Ma, Ansimar, Asima, Bestofyline, Chuan Ning, D-Fyal, Dilatair, Doxiba, Doxiva, Doxobid, Doxobron, Doxofilina, Doxofillina, Doxofyllin, Doxoll, Doxophylline, Doxovent, Doxyjohn, Fei Te Ai Si,Fixolin,Jian Fang Neng, Lang Ming, Lv Meng, Mai Ping Xi, Maxivent, Mucosma, Na De Lai, Phylex, Phyllin, Puroxan, Rexipin, Shu Zhi, Shuai An, Shuweixin, Suo Di, Suo Ji, Suo Li An, Xi Si Nuo, Xin Qian Ping, Xin Xi Ping, Yi Suo, and Yili. [11]
It is also marketed as a combination drug with terbutaline as Doxoll-TL, Mucosma-T and Phylex-TR. [11] It is also marketed as a combination drug with montelukast as Doxoll-ML, Doxomont, Doxoril-M, Doxovent-M, Lunair-M, and Venidox-M. [11]
A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.
Theophylline, also known as 1,3-dimethylxanthine, is a drug that inhibits phosphodiesterase and blocks adenosine receptors. It is used to treat chronic obstructive pulmonary disease (COPD) and asthma. Its pharmacology is similar to other methylxanthine drugs. Trace amounts of theophylline are naturally present in tea, coffee, chocolate, yerba maté, guarana, and cola.
A bronchodilator or broncholytic is a substance that dilates the bronchi and bronchioles, decreasing resistance in the respiratory airway and increasing airflow to the lungs. Bronchodilators may be originating naturally within the body, or they may be medications administered for the treatment of breathing difficulties, usually in the form of inhalers. They are most useful in obstructive lung diseases, of which asthma and chronic obstructive pulmonary disease are the most common conditions. Although this remains somewhat controversial, they might be useful in bronchiolitis and bronchiectasis. They are often prescribed but of unproven significance in restrictive lung diseases.
Beta2-adrenergic agonists, also known as adrenergic β2 receptor agonists, are a class of drugs that act on the β2 adrenergic receptor. Like other β adrenergic agonists, they cause smooth muscle relaxation. β2 adrenergic agonists' effects on smooth muscle cause dilation of bronchial passages, vasodilation in muscle and liver, relaxation of uterine muscle, and release of insulin. They are primarily used to treat asthma and other pulmonary disorders, such as Chronic obstructive pulmonary disease (COPD).
Aminophylline is a compound of the bronchodilator theophylline with ethylenediamine in 2:1 ratio. The ethylenediamine improves solubility, and the aminophylline is usually found as a dihydrate.
Bronchoconstriction is the constriction of the airways in the lungs due to the tightening of surrounding smooth muscle, with consequent coughing, wheezing, and shortness of breath.
Long-acting β adrenoceptor agonists are usually prescribed for moderate-to-severe persistent asthma patients or patients with chronic obstructive pulmonary disease (COPD). They are designed to reduce the need for shorter-acting β2 agonists such as salbutamol (albuterol), as they have a duration of action of approximately 12 hours in comparison with the 4-to-6-hour duration of salbutamol, making them candidates for sparing high doses of corticosteroids or treating nocturnal asthma and providing symptomatic improvement in patients with COPD. With the exception of formoterol, long-acting β2 agonists are not recommended for the treatment of acute asthma exacerbations because of their slower onset of action compared to salbutamol. Their long duration of action is due to the addition of a long, lipophilic side-chain that binds to an exosite on adrenergic receptors. This allows the active portion of the molecule to continuously bind and unbind at β2 receptors in the smooth muscle in the lungs.
An analeptic, in medicine, is a central nervous system stimulant. The term "analeptic" typically refers to respiratory analeptics. Analeptics are central nervous system (CNS) stimulants that include a wide variety of medications used to treat depression, attention deficit hyperactivity disorder (ADHD), and respiratory depression. Analeptics can also be used as convulsants, with low doses causing patients to experience heightened awareness, restlessness, and rapid breathing. The primary medical use of these drugs is as an anesthetic recovery tool or to treat emergency respiratory depression. Other drugs of this category are prethcamide, pentylenetetrazole, and nikethamide. Nikethamide is now withdrawn due to risk of convulsions. Analeptics have recently been used to better understand the treatment of a barbiturate overdose. Through the use of agents, researchers were able to treat obtundation and respiratory depression.
Levosalbutamol, also known as levalbuterol, is a short-acting β2 adrenergic receptor agonist used in the treatment of asthma and chronic obstructive pulmonary disease (COPD). Evidence is inconclusive regarding the efficacy of levosalbutamol versus salbutamol or salbutamol-levosalbutamol combinations, though levosalbutamol is believed to have a better safety profile due to its more selective binding to β2 receptors versus β1.
Bitolterol mesylate (Tornalate) is a short-acting β2 adrenergic receptor agonist used for the relief of bronchospasm in conditions such as asthma and COPD. In these disorders there is a narrowing of the airways that carry air to the lungs. Muscle spasm and inflammation within the bronchi worsen this narrowing. Bitolterol relaxes the smooth muscles present continuously around the bronchi and bronchioles facilitating the flow of air through them.
Diprophylline (INN) or dyphylline (USAN), is a xanthine derivative with bronchodilator and vasodilator effects. It is used in the treatment of respiratory disorders like asthma, cardiac dyspnea, and bronchitis. It acts as an adenosine receptor antagonist and phosphodiesterase inhibitor.
A phosphodiesterase-4 inhibitor, commonly referred to as a PDE4 inhibitor, is a drug used to block the degradative action of phosphodiesterase 4 (PDE4) on cyclic adenosine monophosphate (cAMP). It is a member of the larger family of PDE inhibitors. The PDE4 family of enzymes are the most prevalent PDE in immune cells. They are predominantly responsible for hydrolyzing cAMP within both immune cells and cells in the central nervous system.
Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease characterized by long-term respiratory symptoms and airflow limitation. The main symptoms of COPD include shortness of breath and a cough, which may or may not produce mucus. COPD progressively worsens, with everyday activities such as walking or dressing becoming difficult. While COPD is incurable, it is preventable and treatable. The two most common types of COPD are emphysema and chronic bronchitis and have been the two classic COPD phenotypes. Emphysema is defined as enlarged airspaces (alveoli) whose walls have broken down resulting in permanent damage to the lung tissue. Chronic bronchitis is defined as a productive cough that is present for at least three months each year for two years. Both of these conditions can exist without airflow limitation when they are not classed as COPD. Emphysema is just one of the structural abnormalities that can limit airflow and can exist without airflow limitation in a significant number of people. Chronic bronchitis does not always result in airflow limitation but in young adults who smoke the risk of developing COPD is high. Many definitions of COPD in the past included emphysema and chronic bronchitis, but these have never been included in GOLD report definitions. Emphysema and chronic bronchitis remain the predominant phenotypes of COPD but there is often overlap between them and a number of other phenotypes have also been described. COPD and asthma may coexist and converge in some individuals. COPD is associated with low-grade systemic inflammation.
Enprofylline (3-propylxanthine) is a xanthine derivative used in the treatment of asthma, which acts as a bronchodilator. It acts primarily as a competitive nonselective phosphodiesterase inhibitor with relatively little activity as a nonselective adenosine receptor antagonist.
8-Cyclopentyl-1,3-dimethylxanthine (8-Cyclopentyltheophylline, 8-CPT, CPX) is a drug which acts as a potent and selective antagonist for the adenosine receptors, with some selectivity for the A1 receptor subtype, as well as a non-selective phosphodiesterase inhibitor. It has stimulant effects in animals with slightly higher potency than caffeine.
8-Phenyltheophylline (8-phenyl-1,3-dimethylxanthine, 8-PT) is a drug derived from the xanthine family which acts as a potent and selective antagonist for the adenosine receptors A1 and A2A, but unlike other xanthine derivatives has virtually no activity as a phosphodiesterase inhibitor. It has stimulant effects in animals with similar potency to caffeine. Coincidentally 8-phenyltheophylline has also been found to be a potent and selective inhibitor of the liver enzyme CYP1A2 which makes it likely to cause interactions with other drugs which are normally metabolised by CYP1A2.
Olodaterol is an ultra-long-acting β adrenoreceptor agonist (ultra-LABA) used as an inhalation for treating people with chronic obstructive pulmonary disease (COPD). It is manufactured by Boehringer Ingelheim.
Indacaterol/glycopyrronium bromide, sold under the brand name Ultibro Breezhaler among others, is a fixed-dose combination medication for inhalation consisting of the following two active ingredients:
Glycopyrronium bromide/formoterol, sold under the brand name Bevespi Aerosphere, is a combination medication for the maintenance treatment of chronic obstructive pulmonary disease (COPD). It is a combination of glycopyrronium bromide and formoterol. It is inhaled.
Tedral is a medicine formerly used to treat respiratory diseases such as asthma, chronic obstructive lung disease (COPD), chronic bronchitis, and emphysema. It is a combination drug containing three active ingredients - theophylline, ephedrine, phenobarbital. This medication relaxes the smooth muscle of the airways, making breathing easier. The common side effects of Tedral include gastrointestinal disturbances, dizziness, headache and lightheadedness. However, at high dose, it may lead to cardiac arrhythmias, hypertension, seizures or other serious cardiovascular and/or central nervous system adverse effects. Tedral is contraindicated in individuals with hypersensitivity to theophylline, ephedrine and/or phenobarbital. It should be also used in caution in patients with cardiovascular complications, such as ischemic heart disease and heart failure and/or other disease conditions. It can cause a lot of drug–drug interactions. Therefore, before prescribing patient with Tedral, drug interactions profile should be carefully checked if the patient had other concurrent medication(s). Being used as a treatment option for respiratory diseases for decades, Tedral was withdrawn from the US market in 2006 due to safety concerns.