Atizoram

Last updated
Atizoram
Atizoram structure.svg
Names
IUPAC name
5-{3-[(1S,2S,4R)-Bicyclo[2.2.1]hept-2-yloxy]-4-methoxyphenyl}tetrahydro-2(1H)-pyrimidinone
Other names
CP-80633
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C18H24N2O3/c1-22-15-5-4-12(14-9-19-18(21)20-10-14)8-17(15)23-16-7-11-2-3-13(16)6-11/h4-5,8,11,13-14,16H,2-3,6-7,9-10H2,1H3,(H2,19,20,21)/t11-,13+,16+/m1/s1
    Key: LITNEAPWQHVPOK-FFSVYQOJSA-N
  • COC1=C(C=C(C=C1)C2CNC(=O)NC2)O[C@H]3C[C@@H]4CC[C@H]3C4
Properties
C18H24N2O3
Molar mass 316.401 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Atizoram (CP-80633) is a phosphodiesterase 4 inhibitor. [1]

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Sildenafil</span> Drug for erectile dysfunction and hypertension

Sildenafil, sold under the brand name Viagra, among others, is a medication used to treat erectile dysfunction and pulmonary arterial hypertension. It is also sometimes used off-label for the treatment of certain symptoms in secondary Raynaud's phenomenon. It is unclear if it is effective for treating sexual dysfunction in females. It can be taken orally, intravenously, or through the sublingual route. Onset when taken orally is typically within twenty minutes and lasts for about two hours.

<span class="mw-page-title-main">Phosphodiesterase</span> Class of enzymes

A phosphodiesterase (PDE) is an enzyme that breaks a phosphodiester bond. Usually, phosphodiesterase refers to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases.

<span class="mw-page-title-main">PDE5 inhibitor</span> Vasodilating drug

A phosphodiesterase type 5 inhibitor is a vasodilating drug that works by blocking the degradative action of cGMP-specific phosphodiesterase type 5 (PDE5) on cyclic GMP in the smooth muscle cells lining the blood vessels supplying various tissues. These drugs dilate the corpora cavernosa of the penis, facilitating erection with sexual stimulation, and are used in the treatment of erectile dysfunction (ED). Sildenafil was the first effective oral treatment available for ED. Because PDE5 is also present in the smooth muscle of the walls of the arterioles within the lungs, two PDE5 inhibitors, sildenafil and tadalafil, are FDA-approved for the treatment of pulmonary hypertension. As of 2019, the wider cardiovascular benefits of PDE5 inhibitors are being appreciated.

cGMP-specific phosphodiesterase type 5 Mammalian protein found in Homo sapiens

Cyclic guanosine monophosphate-specific phosphodiesterase type 5 is an enzyme from the phosphodiesterase class. It is found in various tissues, most prominently the corpus cavernosum and the retina. It has also been recently discovered to play a vital role in the cardiovascular system.

<span class="mw-page-title-main">EHNA</span> Chemical compound

EHNA is a potent adenosine deaminase inhibitor, which also acts as a phosphodiesterase inhibitor that selectively inhibits phosphodiesterase type 2 (PDE2).

Phosphodiesterase 1, PDE1, EC 3.1.4.1, systematic name oligonucleotide 5-nucleotidohydrolase) is a phosphodiesterase enzyme also known as calcium- and calmodulin-dependent phosphodiesterase. It is one of the 11 families of phosphodiesterase (PDE1-PDE11). Phosphodiesterase 1 has three subtypes, PDE1A, PDE1B and PDE1C which divide further into various isoforms. The various isoforms exhibit different affinities for cAMP and cGMP.

<span class="mw-page-title-main">Phosphodiesterase 2</span> Class of enzymes

The PDE2 enzyme is one of 21 different phosphodiesterases (PDE) found in mammals. These different PDEs can be subdivided to 11 families. The different PDEs of the same family are functionally related despite the fact that their amino acid sequences show considerable divergence. The PDEs have different substrate specificities. Some are cAMP selective hydrolases, others are cGMP selective hydrolases and the rest can hydrolyse both cAMP and cGMP.

<span class="mw-page-title-main">Autotaxin</span> Protein-coding gene in the species Homo sapiens

Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase family member 2, is an enzyme that in humans is encoded by the ENPP2 gene.

<span class="mw-page-title-main">IBMX</span> Chemical compound

IBMX (3-isobutyl-1-methylxanthine), like other methylated xanthine derivatives, is both a:

  1. competitive non-selective phosphodiesterase inhibitor which raises intracellular cAMP, activates PKA, inhibits TNFα and leukotriene synthesis, and reduces inflammation and innate immunity, and
  2. nonselective adenosine receptor antagonist.
<span class="mw-page-title-main">Triflusal</span> Antiplatelet drug

Triflusal is a platelet aggregation inhibitor that was discovered and developed in the Uriach Laboratories, and commercialised in Spain since 1981. Currently, it is available in 25 countries in Europe, Asia, Africa and America. It is a derivative of acetylsalicylic acid in which a hydrogen atom on the benzene ring has been replaced by a trifluoromethyl group. Trade names include Disgren, Grendis, Aflen and Triflux.

<span class="mw-page-title-main">Ibudilast</span> Chemical compound

Ibudilast is an anti-inflammatory drug used mainly in Japan, which acts as a phosphodiesterase inhibitor, inhibiting the PDE4 subtype to the greatest extent, but also showing significant inhibition of other PDE subtypes.

<span class="mw-page-title-main">PDE4B</span> Protein-coding gene in the species Homo sapiens

cAMP-specific 3',5'-cyclic phosphodiesterase 4B is an enzyme that in humans is encoded by the PDE4B gene.

<span class="mw-page-title-main">RPL-554</span> Chemical compound

RPL-554 (LS-193,855) is a drug candidate for respiratory diseases. It is an analog of trequinsin and, like trequinsin, is a highly selective inhibitor of the phosphodiesterase enzyme, PDE3; indeed, it is >3000-times more potent against PDE3 than PDE4. As of October 2015, inhaled RPL-554 delivered via a nebulizer was in development for COPD and had been studied in asthma.

<span class="mw-page-title-main">Phosphodiesterase-4 inhibitor</span> Class of chemical compounds

A phosphodiesterase-4 inhibitor, commonly referred to as a PDE4 inhibitor, is a drug used to block the degradative action of phosphodiesterase 4 (PDE4) on cyclic adenosine monophosphate (cAMP). It is a member of the larger family of PDE inhibitors. The PDE4 family of enzymes are the most prevalent PDE in immune cells. They are predominantly responsible for hydrolyzing cAMP within both immune cells and cells in the central nervous system.

<span class="mw-page-title-main">Piclamilast</span> Chemical compound

Piclamilast, is a selective PDE4 inhibitor. It is comparable to other PDE4 inhibitors for its anti-inflammatory effects. It has been investigated for its applications to the treatment of conditions such as chronic obstructive pulmonary disease, bronchopulmonary dysplasia and asthma. It is a second generation compound that exhibits structural functionalities of the PDE4 inhibitors cilomilast and roflumilast. The structure for piclamilast was first elucidated in a 1995 European patent application. The earliest mention of the name "piclamilast" was used in a 1997 publication.

<span class="mw-page-title-main">Zaprinast</span> Chemical compound

Zaprinast was an unsuccessful clinical drug candidate that was a precursor to the chemically related PDE5 inhibitors, such as sildenafil (Viagra), which successfully reached the market. It is a phosphodiesterase inhibitor, selective for the subtypes PDE5, PDE6, PDE9 and PDE11. IC50 values are 0.76, 0.15, 29.0, and 12.0 μM, respectively.

Phosphodiesterases (PDEs) are a superfamily of enzymes. This superfamily is further classified into 11 families, PDE1 - PDE11, on the basis of regulatory properties, amino acid sequences, substrate specificities, pharmacological properties and tissue distribution. Their function is to degrade intracellular second messengers such as cyclic adenine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which leads to several biological processes like effect on intracellular calcium level by the Ca2+ pathway.

<span class="mw-page-title-main">Arofylline</span> Chemical compound

Arofylline is a phosphodiesterase inhibitor.

<span class="mw-page-title-main">MY-5445</span> Chemical compound

MY-5445 is a relatively specific phosphodiesterase 5 inhibitor.

References

  1. Wright, K. F.; Turner, C. R.; Jayasinghe-Beck, R.; Cohen, V. L.; Cheng, J. B.; Watson, J. W. (August 1997). "Differential in vivo and in vitro bronchorelaxant activities of CP-80,633, a selective phosphodiesterase 4 inhibitor". Can. J. Physiol. Pharmacol. 75 (8): 1001–8. doi:10.1139/y97-123. PMID   9360015.