Phosphodiesterase-4 inhibitor

Last updated
Rolipram, the prototypical PDE4 inhibitor Rolipram.svg
Rolipram, the prototypical PDE4 inhibitor

A phosphodiesterase-4 inhibitor, commonly referred to as a PDE4 inhibitor, is a drug used to block the degradative action of phosphodiesterase 4 (PDE4) on cyclic adenosine monophosphate (cAMP). It is a member of the larger family of PDE inhibitors. The PDE4 family of enzymes are the most prevalent PDE in immune cells. They are predominantly responsible for hydrolyzing cAMP within both immune cells and cells in the central nervous system. [1]

Contents

Therapeutic utility

The prototypical PDE4 inhibitor is rolipram. PDE4 inhibitors are known to possess procognitive (including long term memory-improving), [2] wakefulness-promoting, [3] neuroprotective, [4] [5] and anti-inflammatory effects. [6] Consequently, PDE4 inhibitors have been investigated as treatments for a diverse group of different diseases, including central nervous system disorders such as major depressive disorder (clinical depression), anxiety disorders, schizophrenia, [7] [8] Parkinson's disease, [9] Alzheimer's disease, [10] multiple sclerosis, [11] attention deficit-hyperactivity disorder, Huntington's disease, stroke, autism and inflammatory conditions such as chronic obstructive pulmonary disease (COPD), asthma and rheumatoid arthritis. [12] [13] [14]

PDE4D inhibition, along with PDE4A inhibition also appears to be responsible for the antidepressant effects of PDE4 inhibitors. [14] Similarly PDE4B inhibition appears to be required for the antipsychotic effects of PDE4 inhibitors, [13] in line with this view PDE4B polymorphisms and altered gene expression in the central nervous system have been associated with schizophrenia and bipolar disorder in a postmortem study. [15] PDE4 also regulates the D1/PKA/DARPP-32 signalling cascade in the frontal cortex, which may contribute to the antipsychotic and procognitive effects of PDE4 inhibitors. [16] Whereas PDE4C is expressed primarily in the periphery and hence may be partly responsible for the peripheral effects of PDE4 inhibitors (e.g. their anti-inflammatory effects). [14] PDE4 inhibition is also known to attenuate ethanol seeking and consumption in rats, [17] hence suggesting its possible utility in the treatment of alcohol dependence. Indeed, one experiment has found that intake of a PDE4 oral medication for psoriasis has significantly reduced alcohol consumption in serious human drinkers compared with those taking the placebo. [18] A few different lines of evidence suggests the therapeutic utility in the treatment of brain tumours. [19]

The clinical development of PDE4 inhibitors has been hampered by their potent emetic effects, which appear to be related to their inhibition of PDE4D which is expressed in the area postrema. [14]

Adverse reactions

Nausea, vomiting, and related general gastrointestinal side effects are the most commonly implicated side effects of PDE4 inhibitors. Other possible side effects include respiratory and urinary tract infections, which have been discovered from the clinical use of roflumilast. [20]

Examples

Mode of action

PDE4 hydrolyzes cyclic adenosine monophosphate (cAMP) to inactive adenosine monophosphate (AMP). Inhibition of PDE4 blocks hydrolysis of cAMP, thereby increasing levels of cAMP within cells.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Phosphodiesterase</span> Class of enzymes

A phosphodiesterase (PDE) is an enzyme that breaks a phosphodiester bond. Usually, phosphodiesterase refers to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases.

cGMP-specific phosphodiesterase type 5 Mammalian protein found in Homo sapiens

Cyclic guanosine monophosphate-specific phosphodiesterase type 5 is an enzyme from the phosphodiesterase class. It is found in various tissues, most prominently the corpus cavernosum and the retina. It has also been recently discovered to play a vital role in the cardiovascular system.

<span class="mw-page-title-main">Rolipram</span> Chemical compound

Rolipram is a selective phosphodiesterase-4 inhibitor discovered and developed by Schering AG as a potential antidepressant drug in the early 1990s. It served as a prototype molecule for several companies' drug discovery and development efforts. Rolipram was discontinued after clinical trials showed that its therapeutic window was too narrow; it could not be dosed at high enough levels to be effective without causing significant gastrointestinal side effects.

<span class="mw-page-title-main">Phosphodiesterase 3</span> Class of enzymes

PDE3 is a phosphodiesterase. The PDEs belong to at least eleven related gene families, which are different in their primary structure, substrate affinity, responses to effectors, and regulation mechanism. Most of the PDE families are composed of more than one gene. PDE3 is clinically significant because of its role in regulating heart muscle, vascular smooth muscle and platelet aggregation. PDE3 inhibitors have been developed as pharmaceuticals, but their use is limited by arrhythmic effects and they can increase mortality in some applications.

Phosphodiesterase 1, PDE1, EC 3.1.4.1, systematic name oligonucleotide 5-nucleotidohydrolase) is a phosphodiesterase enzyme also known as calcium- and calmodulin-dependent phosphodiesterase. It is one of the 11 families of phosphodiesterase (PDE1-PDE11). Phosphodiesterase 1 has three subtypes, PDE1A, PDE1B and PDE1C which divide further into various isoforms. The various isoforms exhibit different affinities for cAMP and cGMP.

<span class="mw-page-title-main">Phosphodiesterase 2</span> Class of enzymes

The PDE2 enzyme is one of 21 different phosphodiesterases (PDE) found in mammals. These different PDEs can be subdivided to 11 families. The different PDEs of the same family are functionally related despite the fact that their amino acid sequences show considerable divergence. The PDEs have different substrate specificities. Some are cAMP selective hydrolases, others are cGMP selective hydrolases and the rest can hydrolyse both cAMP and cGMP.

<span class="mw-page-title-main">PDE4D</span> Protein-coding gene in the species Homo sapiens

cAMP-specific 3',5'-cyclic phosphodiesterase 4D is an enzyme that in humans is encoded by the PDE4D gene.

<span class="mw-page-title-main">Ibudilast</span> Chemical compound

Ibudilast is an anti-inflammatory drug used mainly in Japan, which acts as a phosphodiesterase inhibitor, inhibiting the PDE4 subtype to the greatest extent, but also showing significant inhibition of other PDE subtypes.

<span class="mw-page-title-main">PDE4A</span> Protein-coding gene in the species Homo sapiens

cAMP-specific 3',5'-cyclic phosphodiesterase 4A is an enzyme that in humans is encoded by the PDE4A gene.

<span class="mw-page-title-main">PDE4B</span> Protein-coding gene in the species Homo sapiens

cAMP-specific 3',5'-cyclic phosphodiesterase 4B is an enzyme that in humans is encoded by the PDE4B gene.

<span class="mw-page-title-main">PDE10A</span> Enzyme and protein-coding gene in humans

cAMP and cAMP-inhibited cGMP 3',5'-cyclic phosphodiesterase 10A is an enzyme that in humans is encoded by the PDE10A gene.

<span class="mw-page-title-main">Cilomilast</span> Chemical compound

Cilomilast is a drug which was developed for the treatment of respiratory disorders such as asthma and chronic obstructive pulmonary disease (COPD). It is orally active and acts as a selective phosphodiesterase-4 inhibitor.

<span class="mw-page-title-main">Roflumilast</span> Medication

Roflumilast, sold under the trade name Daxas among others, is a drug that acts as a selective, long-acting inhibitor of the enzyme phosphodiesterase-4 (PDE-4). It has anti-inflammatory effects and is used as an orally administered drug for the treatment of inflammatory conditions of the lungs such as chronic obstructive pulmonary disease (COPD).

<span class="mw-page-title-main">Piclamilast</span> Chemical compound

Piclamilast, is a selective PDE4 inhibitor. It is comparable to other PDE4 inhibitors for its anti-inflammatory effects. It has been investigated for its applications to the treatment of conditions such as chronic obstructive pulmonary disease, bronchopulmonary dysplasia and asthma. It is a second generation compound that exhibits structural functionalities of the PDE4 inhibitors cilomilast and roflumilast. The structure for piclamilast was first elucidated in a 1995 European patent application. The earliest mention of the name "piclamilast" was used in a 1997 publication.

<span class="mw-page-title-main">Filaminast</span> Chemical compound

Filaminast was a drug candidate developed by Wyeth-Ayerst. It is a phosphodiesterase 4 inhibitor and an analog of rolipram, which served as a prototype molecule for several development efforts. It was discontinued after a Phase II trial showed that its therapeutic window was too narrow; it could not be dosed high enough without causing significant side effects, which was a problem with the rolipram class of molecules.

<span class="mw-page-title-main">Apremilast</span> Medication for psoriasis and psoriatic arthritis

Apremilast, sold under the brand name Otezla among others, is a medication for the treatment of certain types of psoriasis and psoriatic arthritis. The drug acts as a selective inhibitor of the enzyme phosphodiesterase 4 (PDE4) and inhibits spontaneous production of TNF-alpha from human rheumatoid synovial cells. It is taken by mouth.

Phosphodiesterases (PDEs) are a superfamily of enzymes. This superfamily is further classified into 11 families, PDE1 - PDE11, on the basis of regulatory properties, amino acid sequences, substrate specificities, pharmacological properties and tissue distribution. Their function is to degrade intracellular second messengers such as cyclic adenine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which leads to several biological processes like effect on intracellular calcium level by the Ca2+ pathway.

<span class="mw-page-title-main">Immunomodulatory imide drug</span> Class of immunomodulatory drugs

Immunomodulatory imide drugs (IMiDs) are a class of immunomodulatory drugs containing an imide group. The IMiD class includes thalidomide and its analogues. These drugs may also be referred to as 'Cereblon modulators'. Cereblon (CRBN) is the protein targeted by this class of drugs.

<span class="mw-page-title-main">Crisaborole</span> Chemical compound

Crisaborole, sold under the brand name Eucrisa among others, is a nonsteroidal topical medication used for the treatment of mild-to-moderate atopic dermatitis (eczema) in adults and children.

References

  1. Spina, D (2008). "PDE4 inhibitors: current status". British Journal of Pharmacology . 155 (3): 308–315. doi:10.1038/bjp.2008.307. PMC   2567892 . PMID   18660825.
  2. Barad M, Bourtchouladze R, Winder DG, Golan H, Kandel E (1998). "Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory". Proceedings of the National Academy of Sciences of the United States of America. 95 (25): 15020–5. Bibcode:1998PNAS...9515020B. doi: 10.1073/pnas.95.25.15020 . PMC   24568 . PMID   9844008.
  3. Lelkes Z, Alföldi P, Erdos A, Benedek G (1998). "Rolipram, an antidepressant that increases the availability of cAMP, transiently enhances wakefulness in rats". Pharmacology Biochemistry and Behavior. 60 (4): 835–9. doi:10.1016/S0091-3057(98)00038-0. PMID   9700966. S2CID   37020086.
  4. Block F, Schmidt W, Nolden-Koch M, Schwarz M (2001). "Rolipram reduces excitotoxic neuronal damage". NeuroReport. 12 (7): 1507–11. doi:10.1097/00001756-200105250-00041. PMID   11388438. S2CID   2768440.
  5. Chen RW, Williams AJ, Liao Z, Yao C, Tortella FC, Dave JR (2007). "Broad spectrum neuroprotection profile of phosphodiesterase inhibitors as related to modulation of cell-cycle elements and caspase-3 activation". Neuroscience Letters. 418 (2): 165–9. doi:10.1016/j.neulet.2007.03.033. PMID   17398001. S2CID   25453633.
  6. "Intracellular Mechanisms of Inflammation:PDE4 Promotes the Release of Proinflammatory Mediators". Celgene Corporation. 2012. Archived from the original on 2019-08-13. Retrieved 2012-07-24.
  7. Maxwell CR, Kanes SJ, Abel T, Siegel SJ (2004). "Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications". Neuroscience. 129 (1): 101–7. doi:10.1016/j.neuroscience.2004.07.038. PMID   15489033. S2CID   19578277.
  8. Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abel T, Kelly MP (2006). "Rolipram: A specific phosphodiesterase 4 inhibitor with potential antipsychotic activity". Neuroscience. 144 (1): 239–246. doi:10.1016/j.neuroscience.2006.09.026. PMC   3313447 . PMID   17081698.
  9. Beal, MF; Cleren, C; Calingasan, NY; Yang, L; Klivenyi, P; Lorenzl, S (2005). "Oxidative Damage in Parkinson's Disease". U.S. Army Medical Research and Material Command Fort Detrick, Maryland 21702-5012. Archived from the original on May 23, 2012.
  10. Smith, DL; Pozueta, J; Gong, B; Arancio, O; Shelanski, M (September 2009). "Reversal of long-term dendritic spine alterations in Alzheimer disease models". Proceedings of the National Academy of Sciences of the United States of America. 106 (39): 16877–16882. Bibcode:2009PNAS..10616877S. doi: 10.1073/pnas.0908706106 . PMC   2743726 . PMID   19805389.
  11. Dinter, H (February 2000). "Phosphodiesterase type 4 inhibitors: potential in the treatment of multiple sclerosis?". BioDrugs. 13 (2): 87–94. doi:10.2165/00063030-200013020-00002. PMID   18034515. S2CID   23444101.
  12. Dyke, HJ; Montana, JG (January 2002). "Update on the therapeutic potential of PDE4 inhibitors". Expert Opinion on Investigational Drugs. 11 (1): 1–13. doi:10.1517/13543784.11.1.1. PMID   11772317. S2CID   22623399.
  13. 1 2 Halene, TB; Siegel, SJ (October 2007). "PDE inhibitors in psychiatry – future options for dementia, depression and schizophrenia?". Drug Discovery Today. 12 (19–20): 870–878. doi:10.1016/j.drudis.2007.07.023. PMID   17933689.
  14. 1 2 3 4 Francis, SH; Conti, M; Houslay, MD, eds. (2011). Phosphodiesterases as Drug Targets (PDF). Handbook of Experimental Pharmacology. Vol. 204. Springer Berlin Heidelberg. doi:10.1007/978-3-642-17969-3. ISBN   978-3-642-17968-6.[ dead link ]
  15. Fatemi, SH; King, DP; Reutiman, TJ; Folsom, TD; Laurence, JA; Lee, S; Fan, YT; Paciga, SA; Conti, M; Menniti, FS (April 2008). "PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia". Schizophrenia Research. 101 (1–3): 36–49. doi:10.1016/j.schres.2008.01.029. PMID   18394866. S2CID   32661995.
  16. Kuroiwa, M; Snyder, GL; Shuto, T; Fukuda, A; Yanagawa, Y; Benavides, DR; Nairn, AC; Bibb, JA; Greengard, P; Nishi, A (February 2012). "Phosphodiesterase 4 inhibition enhances the dopamine D1 receptor/PKA/DARPP-32 signaling cascade in frontal cortex". Psychopharmacology. 219 (4): 1065–1079. doi:10.1007/s00213-011-2436-8. PMC   3539205 . PMID   21833500.
  17. Wen, RT; Zhang, M; Qin, WJ; Liu, Q; Wang, WP; Lawrence, AJ; Zhang, HT; Liang, JH (December 2012). "The Phosphodiesterase-4 (PDE4) Inhibitor Rolipram Decreases Ethanol Seeking and Consumption in Alcohol-Preferring Fawn-Hooded Rats". Alcoholism: Clinical and Experimental Research. 36 (12): 2157–2167. doi:10.1111/j.1530-0277.2012.01845.x. PMC   4335658 . PMID   22671516.
  18. Wilson, C. (2021). Psoriasis drug may cut alcohol misuse. New Scientist, 250(3340), p.16
  19. Sengupta, R; Sun, T; Warrington, NM; Rubin, JB (June 2011). "Treating brain tumors with PDE4 inhibitors". Trends in Pharmacological Sciences. 32 (6): 337–344. doi:10.1016/j.tips.2011.02.015. PMC   3106141 . PMID   21450351.
  20. 1 2 "DALIRESP (roflumilast) tablet [Forest Laboratories, Inc.]". DailyMed. Forest Laboratories, Inc. August 2013. Retrieved 13 November 2013.
  21. Brooks, M (21 March 2014). "FDA Clears Apremilast (Otezla) for Psoriatic Arthritis". Medscape Medical News. WebMD. Retrieved 28 March 2014.
  22. Lowes, R (23 September 2014). "FDA Approves Apremilast (Otezla) for Plaque Psoriasis". Medscape Medical News. WebMD. Retrieved 13 October 2014.
  23. Rennard, S; Knobil, K; Rabe, KF; Morris, A; Schachter, N; Locantore, N; Canonica, WG; Zhu, Y; Barnhart, F (2008). "The efficacy and safety of cilomilast in COPD". Drugs. 68 (Suppl 2): 3–57. doi:10.2165/0003495-200868002-00002. PMID   19105585. S2CID   2216800.
  24. Nazarian, R; Weinberg, JM (November 2009). "AN-2728, a PDE4 Inhibitor for the Potential Topical Treatment of Psoriasis and Atopic Dermatitis". Current Opinion in Investigational Drugs. 10 (11): 1236–42. PMID   19876791.
  25. Moustafa, F; Feldman, SR (16 May 2014). "A Review of Phosphodiesterase-Inhibition and the Potential Role for Phosphodiesterase 4-Inhibitors in Clinical Dermatology" (PDF). Dermatology Online Journal. 20 (5): 22608. doi: 10.5070/D3205022608 . PMID   24852768.
  26. "FDA Approves Eucrisa for Eczema". U.S. Food and Drug Administration. 14 December 2016.
  27. 1 2 Boswell-Smith, Victoria; Spina, Domenico; Page, Clive P. (January 2006). "Phosphodiesterase inhibitors". British Journal of Pharmacology. 147 (Suppl 1): S252–257. doi:10.1038/sj.bjp.0706495. ISSN   0007-1188. PMC   1760738 . PMID   16402111.
  28. Collado, M. C.; Beleta, J.; Martinez, E.; Miralpeix, M.; Domènech, T.; Palacios, J. M.; Hernández, J. (1998). "Functional and biochemical evidence for diazepam as a cyclic nucleotide phosphodiesterase type 4 inhibitor". British Journal of Pharmacology. 123 (6): 1047–1054. doi:10.1038/sj.bjp.0701698. PMC   1565256 . PMID   9559885.
  29. Yu, M. C.; Chen, J. H.; Lai, C. Y.; Han, C. Y.; Ko, W. C. (2009). "Luteolin, a non-selective competitive inhibitor of phosphodiesterases 1-5, displaced [(3)H]-rolipram from high-affinity rolipram binding sites and reversed xylazine/ketamine-induced anesthesia". European Journal of Pharmacology. 627 (1–3): 269–275. doi:10.1016/j.ejphar.2009.10.031. PMID   19853596.
  30. de Visser, Y. P.; Walther, F. J.; Laghmani E. H.; van Wijngaarden, S.; Nieuwland, K.; Wagenaar, G. T. (2008). "Phosphodiesterase-4 inhibition attenuates pulmonary inflammation in neonatal lung injury". European Respiratory Journal. 31 (3): 633–644. doi: 10.1183/09031936.00071307 . PMID   18094015.
  31. "FDA Approves Arcutis' Zoryve (Roflumilast) Cream 0.3% For the Treatment of Plaque Psoriasis in Individuals Age 12 and Older" (Press release). Arcutis Biotherapeutics. 29 July 2022. Archived from the original on 1 August 2022. Retrieved 1 August 2022 via GlobeNewswire.