Diprophylline

Last updated
Diprophylline
Diprophylline.svg
Clinical data
Trade names Lufyllin
Other names7-(2,3-Dihydroxy-propyl)theophylline
AHFS/Drugs.com Consumer Drug Information
MedlinePlus a682494
Routes of
administration
By mouth
ATC code
Legal status
Legal status
Identifiers
  • 7-(2,3-Dihydroxypropyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.006.843 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C10H14N4O4
Molar mass 254.246 g·mol−1
3D model (JSmol)
  • O=C2N(c1ncn(c1C(=O)N2C)CC(O)CO)C
  • InChI=1S/C10H14N4O4/c1-12-8-7(9(17)13(2)10(12)18)14(5-11-8)3-6(16)4-15/h5-6,15-16H,3-4H2,1-2H3 Yes check.svgY
  • Key:KSCFJBIXMNOVSH-UHFFFAOYSA-N Yes check.svgY
   (verify)

Diprophylline (INN) [1] or dyphylline (USAN) (trade names Dilor, Lufyllin), is a xanthine derivative with bronchodilator and vasodilator effects. It is used in the treatment of respiratory disorders like asthma, cardiac dyspnea, and bronchitis. It acts as an adenosine receptor antagonist and phosphodiesterase inhibitor. [2] [3]

See also

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Xanthine</span> Chemical compound

Xanthine is a purine base found in most human body tissues and fluids, as well as in other organisms. Several stimulants are derived from xanthine, including caffeine, theophylline, and theobromine.

<span class="mw-page-title-main">Adenosine receptor</span> Class of four receptor proteins to the molecule adenosine

The adenosine receptors (or P1 receptors) are a class of purinergic G protein-coupled receptors with adenosine as the endogenous ligand. There are four known types of adenosine receptors in humans: A1, A2A, A2B and A3; each is encoded by a different gene.

<span class="mw-page-title-main">Aminophylline</span> Chemical compound

Aminophylline is a compound of the bronchodilator theophylline with ethylenediamine in 2:1 ratio. The ethylenediamine improves solubility, and the aminophylline is usually found as a dihydrate.

<span class="mw-page-title-main">Analeptic</span> Drug class

An analeptic, in medicine, is a central nervous system stimulant. The term "analeptic" typically refers to respiratory analeptics. Analeptics are central nervous system (CNS) stimulants that include a wide variety of medications used to treat depression, attention deficit hyperactivity disorder (ADHD), and respiratory depression. Analeptics can also be used as convulsants, with low doses causing patients to experience heightened awareness, restlessness, and rapid breathing. The primary medical use of these drugs is as an anesthetic recovery tool or to treat emergency respiratory depression. Other drugs of this category are prethcamide, pentylenetetrazole, and nikethamide. Nikethamide is now withdrawn due to risk of convulsions. Analeptics have recently been used to better understand the treatment of a barbiturate overdose. Through the use of agents, researchers were able to treat obtundation and respiratory depression.

<span class="mw-page-title-main">IBMX</span> Chemical compound

IBMX (3-isobutyl-1-methylxanthine), like other methylated xanthine derivatives, is both a:

  1. competitive non-selective phosphodiesterase inhibitor which raises intracellular cAMP, activates PKA, inhibits TNFα and leukotriene synthesis, and reduces inflammation and innate immunity, and
  2. nonselective adenosine receptor antagonist.
Adenosine A<sub>2A</sub> receptor Protein-coding gene in the species Homo sapiens

The adenosine A2A receptor, also known as ADORA2A, is an adenosine receptor, and also denotes the human gene encoding it.

Adenosine A<sub>2B</sub> receptor Protein-coding gene in the species Homo sapiens

The adenosine A2B receptor, also known as ADORA2B, is a G-protein coupled adenosine receptor, and also denotes the human adenosine A2b receptor gene which encodes it.

<span class="mw-page-title-main">Dipropylcyclopentylxanthine</span> Chemical compound

8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, PD-116,948) is a drug which acts as a potent and selective antagonist for the adenosine A1 receptor. It has high selectivity for A1 over other adenosine receptor subtypes, but as with other xanthine derivatives DPCPX also acts as a phosphodiesterase inhibitor, and is almost as potent as rolipram at inhibiting PDE4. It has been used to study the function of the adenosine A1 receptor in animals, which has been found to be involved in several important functions such as regulation of breathing and activity in various regions of the brain, and DPCPX has also been shown to produce behavioural effects such as increasing the hallucinogen-appropriate responding produced by the 5-HT2A agonist DOI, and the dopamine release induced by MDMA, as well as having interactions with a range of anticonvulsant drugs.

<span class="mw-page-title-main">SCH-58261</span> Chemical compound

SCH-58261 is a drug which acts as a potent and selective antagonist for the adenosine receptor A2A, with more than 50x selectivity for A2A over other adenosine receptors. It has been used to investigate the mechanism of action of caffeine, which is a mixed A1 / A2A antagonist, and has shown that the A2A receptor is primarily responsible for the stimulant and ergogenic effects of caffeine, but blockade of both A1 and A2A receptors is required to accurately replicate caffeine's effects in animals. SCH-58261 has also shown antidepressant, nootropic and neuroprotective effects in a variety of animal models, and has been investigated as a possible treatment for Parkinson's disease.

<span class="mw-page-title-main">Doxofylline</span> Chemical compound

Doxofylline is a phosphodiesterase inhibiting bronchodilator used in the treatment of chronic respiratory diseases such as asthma and COPD. Like theophylline, it is a xanthine derivative.

<span class="mw-page-title-main">KF-26777</span> Chemical compound

KF-26777 is a drug which acts as a potent and selective antagonist for the adenosine A3 receptor, with sub-nanomolar affinity (A3 Ki=0.2nM) and high selectivity over the other three adenosine receptor subtypes. Simple xanthine derivatives such as caffeine and DPCPX have generally low affinity for the A3 subtype and must be extended by expanding the ring system and adding an aromatic group to give high A3 affinity and selectivity.

<span class="mw-page-title-main">PSB-10</span> Chemical compound

PSB-10 is a drug which acts as a selective antagonist for the adenosine A3 receptor (ki value at human A3 receptor is 0.44 nM), with high selectivity over the other three adenosine receptor subtypes (ki values at human A1, A2A and A2B receptors are 4.1, 3.3 and 30 μM). Further pharmacological experiments in a [35S]GTPγS binding assay using hA3-CHO-cells indicated that PSB-10 acts as an inverse agonist (IC50 = 4 nM). It has been shown to produce antiinflammatory effects in animal studies. Simple xanthine derivatives such as caffeine and DPCPX have generally low affinity for the A3 subtype and must be extended by expanding the ring system and adding an aromatic group to give high A3 affinity and selectivity. The affinity towards adenosine A3 subtype was measured against the radioligand PSB-11.

<span class="mw-page-title-main">Cartazolate</span> Chemical compound

Cartazolate (SQ-65,396) is a drug of the pyrazolopyridine class. It acts as a GABAA receptor positive allosteric modulator at the barbiturate binding site of the complex and has anxiolytic effects in animals. It is also known to act as an adenosine antagonist at the A1 and A2 subtypes and as a phosphodiesterase inhibitor. Cartazolate was tested in human clinical trials and was found to be efficacious for anxiety but was never marketed. It was developed by a team at E.R. Squibb and Sons in the 1970s.

<span class="mw-page-title-main">CGS-15943</span> Chemical compound

CGS-15943 is a drug which acts as a potent and reasonably selective antagonist for the adenosine receptors A1 and A2A, having a Ki of 3.3nM at A2A and 21nM at A1. It was one of the first adenosine receptor antagonists discovered that is not a xanthine derivative, instead being a triazoloquinazoline. Consequently, CGS-15943 has the advantage over most xanthine derivatives that it is not a phosphodiesterase inhibitor, and so has more a specific pharmacological effects profile. It produces similar effects to caffeine in animal studies, though with higher potency.

<span class="mw-page-title-main">Enprofylline</span> Chemical compound

Enprofylline (3-propylxanthine) is a xanthine derivative used in the treatment of asthma, which acts as a bronchodilator. It acts primarily as a competitive nonselective phosphodiesterase inhibitor with relatively little activity as a nonselective adenosine receptor antagonist.

<span class="mw-page-title-main">8-Cyclopentyl-1,3-dimethylxanthine</span> Chemical compound

8-Cyclopentyl-1,3-dimethylxanthine (8-Cyclopentyltheophylline, 8-CPT, CPX) is a drug which acts as a potent and selective antagonist for the adenosine receptors, with some selectivity for the A1 receptor subtype, as well as a non-selective phosphodiesterase inhibitor. It has stimulant effects in animals with slightly higher potency than caffeine.

<span class="mw-page-title-main">8-Phenyltheophylline</span> Chemical compound

8-Phenyltheophylline (8-phenyl-1,3-dimethylxanthine, 8-PT) is a drug derived from the xanthine family which acts as a potent and selective antagonist for the adenosine receptors A1 and A2A, but unlike other xanthine derivatives has virtually no activity as a phosphodiesterase inhibitor. It has stimulant effects in animals with similar potency to caffeine. Coincidentally 8-phenyltheophylline has also been found to be a potent and selective inhibitor of the liver enzyme CYP1A2 which makes it likely to cause interactions with other drugs which are normally metabolised by CYP1A2.

An adenosine receptor antagonist is a drug which acts as an antagonist of one or more of the adenosine receptors. The best known are xanthines and their derivatives, but there are also non-xanthine representatives

Adenosine A2A receptor antagonists are a class of drugs that blocks adenosine at the adenosine A2A receptor. Notable adenosine A2A receptor antagonists include caffeine, theophylline and istradefylline.

References

  1. "International Non-Proprietary Names. Recommended International Non-Proprietary Names (Rec. I.N.N.): List 1" (PDF). World Health Organization. 1955. p. 188.
  2. Schwabe U, Ukena D, Lohse MJ (September 1985). "Xanthine derivatives as antagonists at A1 and A2 adenosine receptors". Naunyn-Schmiedeberg's Archives of Pharmacology. 330 (3): 212–21. doi:10.1007/bf00572436. PMID   2997628. S2CID   12190457.
  3. Iancu L, Shneur A, Cohen H (1979). "Trials with xanthine derivatives in systemic treatment of psoriasis". Dermatologica. 159 (1): 55–61. doi:10.1159/000250562. PMID   225216.