Theacrine

Last updated

Contents

Theacrine
Theacrine.svg
Theacrine ball-and-stick.png
Names
Preferred IUPAC name
1,3,7,9-Tetramethyl-7,9-dihydro-1H-purine-2,6,8(3H)-trione
Other names
1,3,7,9-Tetramethyluric acid; Temurin; Temorine; Tetramethyluric acid; Tetramethyl uric acid; TeaCrine (trade name)
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.017.268 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C9H12N4O3/c1-10-5-6(11(2)8(10)15)12(3)9(16)13(4)7(5)14/h1-4H3
    Key: QGDOQULISIQFHQ-UHFFFAOYSA-N
  • InChI=1/C9H12N4O3/c1-10-5-6(11(2)8(10)15)12(3)9(16)13(4)7(5)14/h1-4H3
    Key: QGDOQULISIQFHQ-UHFFFAOYAN
  • CN1C2=C(N(C1=O)C)N(C(=O)N(C2=O)C)C
Properties
C9H12N4O3
Molar mass 224.220 g·mol−1
Melting point 226 °C (439 °F; 499 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Theacrine, also known as 1,3,7,9-tetramethyluric acid, is a purine alkaloid found in Cupuaçu (Theobroma grandiflorum) and in a Chinese tea known as kucha (Chinese : ; pinyin :kǔ chá; lit.'bitter tea') ( Camellia assamica var. Kucha). [1] [2] It shows anti-inflammatory and analgesic effects and appears to affect adenosine signalling in a manner similar to caffeine. [2] [3] In kucha leaves, theacrine is synthesized from caffeine in what is thought to be a three-step pathway. [2] Theacrine and caffeine are structurally similar.

Caffeine vs Theacrine.png

Pharmacology

Pharmacodynamics

The exact mechanism of action of theacrine is uncertain, as no binding affinities have been published. However, animal research involving selective A1 and A2A adenosine agonists found theacrine pretreatment attenuated the expected motor depression induced by adenosine agonism, indicating that theacrine is likely an adenosine antagonist. [2]

Administration of selective dopamine D1 and D2 antagonists demonstrate that, similarly to caffeine, [4] the behavioural effects of theacrine are in part mediated by dopamine receptors. [2]

Pharmacokinetics

Theacrine has half-life of 30 to 33 hours. [5]

Safety

Theacrine has demonstrated clinical safety and non-habituating effects in healthy humans over eight weeks of daily use at up to 300 mg/day. [6] Moreover, there was no evidence of the tachyphylaxis typical of neuroactive agents like caffeine and other stimulants. [6]

In animal studies, theacrine has an LD50 of 810 mg/kg, [3] [6] compared to 265 mg/kg for caffeine. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Caffeine</span> Central nervous system stimulant

Caffeine is a central nervous system (CNS) stimulant of the methylxanthine class and is the most commonly consumed psychoactive substance globally. It is mainly used for its eugeroic, ergogenic, or nootropic properties. Caffeine acts by blocking binding of adenosine at a number of adenosine receptor types, inhibiting the centrally depressant effects of adenosine and enhancing the release of acetylcholine. Caffeine has a three-dimensional structure similar to that of adenosine, which allows it to bind and block its receptors. Caffeine also increases cyclic AMP levels through nonselective inhibition of phosphodiesterase, increases calcium release from intracellular stores, and antagonises GABA receptors, although these mechanisms typically occur at concentrations beyond usual human consumption.

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Theobromine</span> Bitter alkaloid of the cacao plant

Theobromine, also known as xantheose, is the principal alkaloid of Theobroma cacao. Theobromine is slightly water-soluble (330 mg/L) with a bitter taste. In industry, theobromine is used as an additive and precursor to some cosmetics. It is found in chocolate, as well as in a number of other foods, including tea, some American hollies and the kola nut. It is a white or colourless solid, but commercial samples can appear yellowish.

<span class="mw-page-title-main">Xanthine</span> Chemical compound

Xanthine is a purine base found in most human body tissues and fluids, as well as in other organisms. Several stimulants are derived from xanthine, including caffeine, theophylline, and theobromine.

<span class="mw-page-title-main">Theophylline</span> Drug used to treat respiratory diseases

Theophylline, also known as 1,3-dimethylxanthine, is a drug that inhibits phosphodiesterase and blocks adenosine receptors. It is used to treat chronic obstructive pulmonary disease (COPD) and asthma. Its pharmacology is similar to other methylxanthine drugs. Trace amounts of theophylline are naturally present in tea, coffee, chocolate, yerba maté, guarana, and kola nut.

<span class="mw-page-title-main">Adenosine</span> Chemical compound

Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside building blocks of RNA (and its derivative deoxyadenosine is a building block of DNA), which are essential for all life on Earth. Its derivatives include the energy carriers adenosine mono-, di-, and triphosphate, also known as AMP/ADP/ATP. Cyclic adenosine monophosphate (cAMP) is pervasive in signal transduction. Adenosine is used as an intravenous medication for some cardiac arrhythmias.

<span class="mw-page-title-main">Adenosine receptor</span> Class of four receptor proteins to the molecule adenosine

The adenosine receptors (or P1 receptors) are a class of purinergic G protein-coupled receptors with adenosine as the endogenous ligand. There are four known types of adenosine receptors in humans: A1, A2A, A2B and A3; each is encoded by a different gene.

<span class="mw-page-title-main">Paraxanthine</span> Chemical compound

Paraxanthine, also known as 1,7-dimethylxanthine, is a metabolite of theophylline and theobromine, two well-known stimulants found in coffee, tea, and chocolate mainly in the form of caffeine. It is a member of the xanthine family of alkaloids, which includes theophylline, theobromine and caffeine.

Alertness is a state of active attention characterized by high sensory awareness. Someone who is alert is vigilant and promptly meets danger or emergency, or is quick to perceive and act. Alertness is a psychological and physiological state.

Adenosine A<sub>2A</sub> receptor Cell surface receptor found in humans

The adenosine A2A receptor, also known as ADORA2A, is an adenosine receptor, and also denotes the human gene encoding it.

Dopamine receptor D<sub>1</sub> Protein-coding gene in humans

Dopamine receptor D1, also known as DRD1. It is one of the two types of D1-like receptor family — receptors D1 and D5. It is a protein that in humans is encoded by the DRD1 gene.

<span class="mw-page-title-main">SCH-58261</span> Chemical compound

SCH-58261 is a drug which acts as a potent and selective antagonist for the adenosine receptor A2A, with more than 50x selectivity for A2A over other adenosine receptors. It has been used to investigate the mechanism of action of caffeine, which is a mixed A1 / A2A antagonist, and has shown that the A2A receptor is primarily responsible for the stimulant and ergogenic effects of caffeine, but blockade of both A1 and A2A receptors is required to accurately replicate caffeine's effects in animals. SCH-58261 has also shown antidepressant, nootropic and neuroprotective effects in a variety of animal models, and has been investigated as a possible treatment for Parkinson's disease.

<span class="mw-page-title-main">PNU-99,194</span> Chemical compound

PNU-99,194(A) (or U-99,194(A)) is a drug which acts as a moderately selective D3 receptor antagonist with ~15-30-fold preference for D3 over the D2 subtype. Though it has substantially greater preference for D3 over D2, the latter receptor does still play some role in its effects, as evidenced by the fact that PNU-99,194 weakly stimulates both prolactin secretion and striatal dopamine synthesis, actions it does not share with the more selective (100-fold) D3 receptor antagonists S-14,297 and GR-103,691.

<span class="mw-page-title-main">CGS-15943</span> Chemical compound

CGS-15943 is a drug which acts as a potent and reasonably selective antagonist for the adenosine receptors A1 and A2A, having a Ki of 3.3nM at A2A and 21nM at A1. It was one of the first adenosine receptor antagonists discovered that is not a xanthine derivative, instead being a triazoloquinazoline. Consequently, CGS-15943 has the advantage over most xanthine derivatives that it is not a phosphodiesterase inhibitor, and so has more a specific pharmacological effects profile. It produces similar effects to caffeine in animal studies, though with higher potency.

<span class="mw-page-title-main">Metaphit</span> Chemical compound

Metaphit is a research chemical that acts as an acylator of NMDARAn, sigma and DAT binding sites in the CNS. It is the m-isothiocyanate derivative of phencyclidine (PCP) and binds irreversibly to the PCP binding site on the NMDA receptor complex. However, later studies suggest the functionality of metaphit is mediated by sites not involved in PCP-induced passive avoidance deficit, and not related to the NMDA receptor complex. Metaphit was also shown to prevent d-amphetamine induced hyperactivity, while significantly depleting dopamine content in the nucleus accumbens. Metaphit was the first acylating ligand used to study the cocaine receptor. It is a structural isomer of the similar research compound fourphit, as it and metaphit both are isothiocyanate substituted derivatives of an analogous scaffold shared with PCP.

<span class="mw-page-title-main">Methylliberine</span> Chemical compound

Methylliberine is an isolate of coffee beans, tea, cola nuts, guarana, cocoa, and yerba mate. It is structurally related to Liberine.

An adenosine receptor antagonist is a drug which acts as an antagonist of one or more of the adenosine receptors. The best known are xanthines and their derivatives, but there are also non-xanthine representatives

<span class="mw-page-title-main">DMPX</span> Chemical compound

DMPX (3,7-dimethyl-1-propargylxanthine) is a caffeine analog which displays affinity to A2 adenosine receptors, in contrast to the A1 subtype receptors. DMPX had 28× and 15× higher potency than caffeine in blocking peripheral and central NECA-responses. The locomotor stimulation caused by DMPX (ED50 10 μmol/kg) was similarly higher than caffeine.

<span class="mw-page-title-main">Incarvillateine</span> Chemical compound

Incarvillateine is a complex monoterpene alkaloid that is a derivative of α-truxillic acid. It can be isolated from the plant genus Incarvillea.

Adenosine A2A receptor antagonists are a class of drugs that blocks adenosine at the adenosine A2A receptor. Notable adenosine A2A receptor antagonists include caffeine, theophylline and istradefylline.

References

  1. Zheng XQ, Ye CX, Kato M, Crozier A, Ashihara H (2002). "Theacrine (1,3,7,9-tetramethyluric acid) synthesis in leaves of a Chinese tea, kucha (Camellia assamica var. Kucha)". Phytochemistry. 60 (2): 129–34. Bibcode:2002PChem..60..129Z. doi:10.1016/s0031-9422(02)00086-9. PMID   12009315.
  2. 1 2 3 4 5 Feduccia AA, Wang Y, Simms JA, Yi HY, Li R, Bjeldanes L, Ye C, Bartlett SE (2012). "Locomotor activation by theacrine, a purine alkaloid structurally similar to caffeine: Involvement of adenosine and dopamine receptors". Pharmacology Biochemistry and Behavior. 102 (2): 241–248. doi:10.1016/j.pbb.2012.04.014. PMID   22579816. S2CID   31549989.
  3. 1 2 Wang Y, Yang X, Zheng X, Li J, Ye C, Song X (2010). "Theacrine, a purine alkaloid with anti-inflammatory and analgesic activities". Fitoterapia. 81 (6): 627–631. doi:10.1016/j.fitote.2010.03.008. PMID   20227468.
  4. Garrett BE, Holtzman SG (January 1994). "D1 and D2 dopamine receptor antagonists block caffeine-induced stimulation of locomotor activity in rats". Pharmacology, Biochemistry, and Behavior. 47 (1): 89–94. doi:10.1016/0091-3057(94)90115-5. ISSN   0091-3057. PMID   7906891. S2CID   23508010.
  5. Mondal G, Wang YH, Butawan M, Bloomer RJ, Yates R (2021-01-06). Caffeine and Methylliberine: A Human Pharmacokinetic Interaction Study (Report). Pharmacology and Therapeutics. doi:10.1101/2021.01.05.21249234.
  6. 1 2 3 Taylor L, Mumford P, Roberts M, Hayward S, Mullins J, Urbina S, Wilborn C (2016). "Safety of TeaCrine®, a non-habituating, naturally-occurring purine alkaloid over eight weeks of continuous use". Journal of the International Society of Sports Nutrition. 13: 2. doi: 10.1186/s12970-016-0113-3 . PMC   4711067 . PMID   26766930.
  7. Warszawski D, Gorodischer R, Kaplanski J (1978). "Comparative toxicity of caffeine and aminophylline (theophylline ethylenediamine) in young and adult rats". Biology of the Neonate. 34 (1–2): 68–71. doi:10.1159/000241107. PMID   698326.