Chrysophanol

Last updated
Chrysophanol
Chrysophanol Structure.svg
Names
Preferred IUPAC name
1,8-Dihydroxy-3-methylanthracene-9,10-dione
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.006.885 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C15H10O4/c1-7-5-9-13(11(17)6-7)15(19)12-8(14(9)18)3-2-4-10(12)16/h2-6,16-17H,1H3
    Key: LQGUBLBATBMXHT-UHFFFAOYSA-N
  • InChI=1/C15H10O4/c1-7-5-9-13(11(17)6-7)15(19)12-8(14(9)18)3-2-4-10(12)16/h2-6,16-17H,1H3
    Key: LQGUBLBATBMXHT-UHFFFAOYAW
  • CC1=CC2=C(C(=C1)O)C(=O)C3=C(C2=O)C=CC=C3O
Properties
C15H10O4
Molar mass 254.241 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chrysophanol, also known as chrysophanic acid, is a fungal isolate and a natural anthraquinone. It is a C-3 methyl substituted chrysazin of the trihydroxyanthraquinone family. [1]

Contents

Chrysophanol (other names; 1,8-dihydroxy-3-methyl-anthraquinone and chrysophanic acid) was found commonly within Chinese medicine and is a naturally occurring anthraquinone. [2] Studies have been conducted on the benefits of chrysophanol and have found that it can aid in preventing cancer, diabetes, asthma, osteoporosis, retinal degeneration, Alzheimer's disease, osteoarthritis, and atherosclerosis. [2]

Its most common effects are of chemotherapeutic and neuroprotective properties.

History

Chrysophanol was first noted from Rheum rhabarbarum which is a plant belonging to the Polygonaceae family. [3] It has since been discovered to be present in various families such as Liliaceae, Meliaceae, Asphodelaceae and Fabaceae among more. [3] As of 2019, it has been observed in 65 species from 14 genera, not just in plants but animals and microbes as well. [3]

Uses

Chrysophanol has been shown to exhibit a variety of effects. It was shown in 2015 to lower cholesterol and triglyceride levels in zebrafish, as well as increase the frequency of peristalsis. This could therefore be used for lipid metabolic disorders in a clinical setting. [4] Chrysophanol has also been shown to exhibit the same properties lipid lowering in rats in 2013. [4]

It also has the potential to stimulate osteoblast differentiation. [5] as well as alleviate diabetic nephropathy [6] Furthermore, it can protect bronchial cells from cigarette smoke extract induced apoptosis. [7] Chrysophanol can also improve the condition of renal interstitial fibrosis. [8]

Chrysophanol has also been used to inhibit T-Cell activation and protect mice from dextran sulphate sodium induced inflammatory bowel disease. [9] It was shown to have attenuated the pro-inflammatory cytokines that were present in the colon tissue due to sulphate sodium induced inflammatory bowel disease. [9]

Mechanism of action

Chrysophanol can alleviate diabetic nephropathy by inactivating TGF-β/EMT signalling. [6] It also has the potential to protect bronchial cells from cigarette smoke extract by repressing CYP1A expression which is usually produced due to excessive reactive oxygen species. [7] Chrysophanol can increase osteoblast differentiation by inducing AMP-activated protein kinase as well as Smad1/5/9. [5] Chrysophanol acts to improve renal interstitial fibrosis by downregulating TGF-β1 and phospho-Smad3 and by upregulating Smad7. [8]

Chrysophanol can also aid in treatment for inflammatory bowel disease by inhibiting inflammation by targeting pro-inflammatory cytokines that are in tumour necrosis factor α. [9] It has also been shown that it inhibits the mitogen-activated protein kinase pathway. [9]

Chrysophanol blocks the proliferation of colon cancer cells in vitro . [10] It induces the necrosis of cells via a reduction in ATP levels. [11] Chrysophanol attenuates the effects of lead exposure in mice by reducing hippocampal neuronal cytoplasmic edema, enhancing mitochondrial crista fusion, significantly increasing memory and learning abilities, reducing lead content in blood, heart, brain, spleen, kidney and liver, promoting superoxide dismutase and glutathione peroxidase activities and reducing malondialdehyde level in the brain, kidney and liver. [12]

Potential therapeutic uses

Chrysophanol can act as an antineoplastic drug. This has been shown in multiple organisms. It has been reported that chrysophanol causes necrosis-like cell death in renal cancer cells. [13] It also has expressed the capability to be classes as an ATC code A10 drug due to its effect on diabetic nephropathy as well as being able to lower lipid absorption. [4] [6]

Production

Chrysophanol is naturally made by a variety of plant species. The most intake is from consumption of rhubarb. [1]

Drug interactions

Chrysophanol has been shown to be able to be co-administered with atorvastatin, to lower cholesterol levels. [4] This is due to the different mechanisms for each, with chrysophanol thought to bind to the stomach to disturb lipid absorption, while atorvastatin decreases cholesterol production in the liver. [4]

Toxicity

Anthraquinones, chrysophanol derivatives among them, have been shown to be hepatotoxic. [14] They can cause apoptosis in normal human liver cells. [14] Chrysophanol derivatives such as chrysophanol-8-o-glucoside, have also been shown to possess anti-coagulant and anti-platelet properties. [15] The derivatives also have potential to cause abnormal oxidative phosphorylation which can result in decreased mitochondrial membrane potential, as well as an increase in abundance of reactive oxygen species, and ultimately will lead to mitochondrial damage and eventual apoptosis. [14]

There is also evidence that chrysophanol could cause damage to DNA. [2] This has been demonstrated in two strains of Salmonella (strains TA 2637 and 1537). [2] It is also important to note, that in treating liver cancer cells, it does so in a way that induced necrosis-like cell death. [16] Necrosis damages the cellular environment, meaning that while it may treat potential issues, it can also damage the surrounding tissue. [16]

Related Research Articles

<span class="mw-page-title-main">Necrosis</span> Unprogrammed cell death caused by external cell injury

Necrosis is a form of cell injury which results in the premature death of cells in living tissue by autolysis. The term "necrosis" came about in the mid-19th century and is commonly attributed to German pathologist Rudolf Virchow, who is often regarded as one of the founders of modern pathology. Necrosis is caused by factors external to the cell or tissue, such as infection, or trauma which result in the unregulated digestion of cell components. In contrast, apoptosis is a naturally occurring programmed and targeted cause of cellular death. While apoptosis often provides beneficial effects to the organism, necrosis is almost always detrimental and can be fatal.

<span class="mw-page-title-main">Tumor necrosis factor</span> Protein

Tumor necrosis factor is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain.

<span class="mw-page-title-main">Kidney disease</span> Damage to or disease of a kidney

Kidney disease, or renal disease, technically referred to as nephropathy, is damage to or disease of a kidney. Nephritis is an inflammatory kidney disease and has several types according to the location of the inflammation. Inflammation can be diagnosed by blood tests. Nephrosis is non-inflammatory kidney disease. Nephritis and nephrosis can give rise to nephritic syndrome and nephrotic syndrome respectively. Kidney disease usually causes a loss of kidney function to some degree and can result in kidney failure, the complete loss of kidney function. Kidney failure is known as the end-stage of kidney disease, where dialysis or a kidney transplant is the only treatment option.

<span class="mw-page-title-main">Osteoprotegerin</span> Mammalian protein found in Homo sapiens

Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor (OCIF) or tumour necrosis factor receptor superfamily member 11B (TNFRSF11B), is a cytokine receptor of the tumour necrosis factor (TNF) receptor superfamily encoded by the TNFRSF11B gene.

<span class="mw-page-title-main">GSK-3</span> Class of enzymes

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.

Advanced glycation end products (AGEs) are proteins or lipids that become glycated as a result of exposure to sugars. They are a bio-marker implicated in aging and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney disease, and Alzheimer's disease.

<span class="mw-page-title-main">Gingerol</span> Chemical compound

Gingerol ([6]-gingerol) is a phenolic phytochemical compound found in fresh ginger that activates heat receptors on the tongue. It is normally found as a pungent yellow oil in the ginger rhizome, but can also form a low-melting crystalline solid. This chemical compound is found in all members of the Zingiberaceae family and is high in concentrations in the grains of paradise as well as an African Ginger species.

<span class="mw-page-title-main">Transforming growth factor beta</span> Cytokine

Transforming growth factor beta (TGF-β) is a multifunctional cytokine belonging to the transforming growth factor superfamily that includes three different mammalian isoforms and many other signaling proteins. TGFB proteins are produced by all white blood cell lineages.

The epoxyeicosatrienoic acids or EETs are signaling molecules formed within various types of cells by the metabolism of arachidonic acid by a specific subset of cytochrome P450 enzymes termed cytochrome P450 epoxygenases. These nonclassic eicosanoids are generally short-lived, being rapidly converted from epoxides to less active or inactive dihydroxy-eicosatrienoic acids (diHETrEs) by a widely distributed cellular enzyme, soluble epoxide hydrolase (sEH), also termed epoxide hydrolase 2. The EETs consequently function as transiently acting, short-range hormones; that is, they work locally to regulate the function of the cells that produce them or of nearby cells. The EETs have been most studied in animal models where they show the ability to lower blood pressure possibly by a) stimulating arterial vasorelaxation and b) inhibiting the kidney's retention of salts and water to decrease intravascular blood volume. In these models, EETs prevent arterial occlusive diseases such as heart attacks and brain strokes not only by their anti-hypertension action but possibly also by their anti-inflammatory effects on blood vessels, their inhibition of platelet activation and thereby blood clotting, and/or their promotion of pro-fibrinolytic removal of blood clots. With respect to their effects on the heart, the EETs are often termed cardio-protective. Beyond these cardiovascular actions that may prevent various cardiovascular diseases, studies have implicated the EETs in the pathological growth of certain types of cancer and in the physiological and possibly pathological perception of neuropathic pain. While studies to date imply that the EETs, EET-forming epoxygenases, and EET-inactivating sEH can be manipulated to control a wide range of human diseases, clinical studies have yet to prove this. Determination of the role of the EETS in human diseases is made particularly difficult because of the large number of EET-forming epoxygenases, large number of epoxygenase substrates other than arachidonic acid, and the large number of activities, some of which may be pathological or injurious, that the EETs possess.

<span class="mw-page-title-main">Bone morphogenetic protein 7</span> Protein-coding gene in the species Homo sapiens

Bone morphogenetic protein 7 or BMP7 is a protein that in humans is encoded by the BMP7 gene.

<span class="mw-page-title-main">TGF beta 1</span> Protein-coding gene in the species Homo sapiens

Transforming growth factor beta 1 or TGF-β1 is a polypeptide member of the transforming growth factor beta superfamily of cytokines. It is a secreted protein that performs many cellular functions, including the control of cell growth, cell proliferation, cell differentiation, and apoptosis. In humans, TGF-β1 is encoded by the TGFB1 gene.

<span class="mw-page-title-main">Ursolic acid</span> Pentacyclic chemical compound found in fruits

Ursolic acid, is a pentacyclic triterpenoid identified in the epicuticular waxes of apples as early as 1920 and widely found in the peels of fruits, as well as in herbs and spices like rosemary and thyme.

Sphingosine-1-phosphate (S1P) is a signaling sphingolipid, also known as lysosphingolipid. It is also referred to as a bioactive lipid mediator. Sphingolipids at large form a class of lipids characterized by a particular aliphatic aminoalcohol, which is sphingosine.

<span class="mw-page-title-main">Honokiol</span> Chemical compound

Honokiol is a lignan isolated from the bark, seed cones, and leaves of trees belonging to the genus Magnolia. It has been identified as one of the chemical compounds in some traditional eastern herbal medicines along with magnolol, 4-O-methylhonokiol, and obovatol.

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 2 (HCA2), also known as GPR109A and niacin receptor 1 (NIACR1), is a protein which in humans is encoded (its formation is directed) by the HCAR2 gene and in rodents by the Hcar2 gene. The human HCAR2 gene is located on the long (i.e., "q") arm of chromosome 12 at position 24.31 (notated as 12q24.31). Like the two other hydroxycarboxylic acid receptors, HCA1 and HCA3, HCA2 is a G protein-coupled receptor (GPCR) located on the surface membrane of cells. HCA2 binds and thereby is activated by D-β-hydroxybutyric acid (hereafter termed β-hydroxybutyric acid), butyric acid, and niacin (also known as nicotinic acid). β-Hydroxybutyric and butyric acids are regarded as the endogenous agents that activate HCA2. Under normal conditions, niacin's blood levels are too low to do so: it is given as a drug in high doses in order to reach levels that activate HCA2.

<span class="mw-page-title-main">USF1</span> Protein-coding gene in the species Homo sapiens

Upstream stimulatory factor 1 is a protein that in humans is encoded by the USF1 gene.

<span class="mw-page-title-main">Allograft inflammatory factor 1</span> Protein-coding gene in the species Homo sapiens

Allograft inflammatory factor 1 (AIF-1) also known as ionized calcium-binding adapter molecule 1 (IBA1) is a protein that in humans is encoded by the AIF1 gene.

An inflammatory cytokine or proinflammatory cytokine is a type of signaling molecule that is secreted from immune cells like helper T cells (Th) and macrophages, and certain other cell types that promote inflammation. They include interleukin-1 (IL-1), IL-6, IL-12, and IL-18, tumor necrosis factor alpha (TNF-α), interferon gamma (IFNγ), and granulocyte-macrophage colony stimulating factor (GM-CSF) and play an important role in mediating the innate immune response. Inflammatory cytokines are predominantly produced by and involved in the upregulation of inflammatory reactions.

Tumstatin is a protein fragment cleaved from collagen that serves as both an antiangiogenic and proapoptotic agent. It has similar function to canstatin, endostatin, restin, and arresten, which also affect angiogenesis. Angiogenesis is the growth of new blood vessels from pre-existing blood vessels, and is important in tumor growth and metastasis. Angiogenesis is stimulated by many growth factors, the most prevalent of which is vascular endothelial growth factor (VEGF).

Apoptosis inhibitor of macrophage (AIM) is a protein produced by macrophages that regulates immune responses and inflammation. It plays a crucial role in key intracellular processes like lipid metabolism and apoptosis.

References

  1. 1 2 PubChem. "Chrysophanol". pubchem.ncbi.nlm.nih.gov. Retrieved 2021-05-31.
  2. 1 2 3 4 Xie L, Tang H, Song J, Long J, Zhang L, Li X (October 2019). "Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics". The Journal of Pharmacy and Pharmacology. 71 (10): 1475–1487. doi: 10.1111/jphp.13143 . PMID   31373015. S2CID   199380101.
  3. 1 2 3 Yusuf MA, Singh BN, Sudheer S, Kharwar RN, Siddiqui S, Abdel-Azeem AM, et al. (February 2019). "Chrysophanol: A Natural Anthraquinone with Multifaceted Biotherapeutic Potential". Biomolecules. 9 (2): 68. doi: 10.3390/biom9020068 . PMC   6406798 . PMID   30781696.
  4. 1 2 3 4 5 Chen K, Wang CQ, Fan YQ, Xie YS, Yin ZF, Xu ZJ, et al. (2015-07-15). "Application of chrysophanol in zebrafish to reduce dietary introduced lipid and its possible mechanism". International Journal of Clinical and Experimental Medicine. 8 (7): 10558–67. PMC   4565228 . PMID   26379845.
  5. 1 2 Lim YJ, Kim KM, Jang WG (April 2021). "Chrysophanol increases osteoblast differentiation via AMPK/Smad1/5/9 phosphorylation in vitro and in vivo". Clinical and Experimental Pharmacology & Physiology. 48 (4): 515–523. doi:10.1111/1440-1681.13443. PMID   33300218. S2CID   228087337.
  6. 1 2 3 Guo C, Wang Y, Piao Y, Rao X, Yin D (2020-11-16). "Chrysophanol Inhibits the Progression of Diabetic Nephropathy via Inactivation of TGF-β Pathway". Drug Design, Development and Therapy. 14: 4951–4962. doi: 10.2147/DDDT.S274191 . PMC   7678702 . PMID   33235436.
  7. 1 2 Wu G, Yuan T, Zhu H, Zhang H, Su J, Guo L, et al. (2020-12-15). "Chrysophanol protects human bronchial epithelial cells from cigarette smoke extract (CSE)-induced apoptosis". International Journal of Molecular Epidemiology and Genetics. 11 (3): 39–45. PMC   7811954 . PMID   33488953.
  8. 1 2 Dou F, Ding Y, Wang C, Duan J, Wang W, Xu H, et al. (October 2020). "Chrysophanol ameliorates renal interstitial fibrosis by inhibiting the TGF-β/Smad signaling pathway". Biochemical Pharmacology. 180: 114079. doi:10.1016/j.bcp.2020.114079. PMID   32511988. S2CID   219552025.
  9. 1 2 3 4 Lee HS, Jeong GS (March 2021). "Chrysophanol Attenuates Manifestations of Immune Bowel Diseases by Regulation of Colorectal Cells and T Cells Activation In Vivo". Molecules. 26 (6): 1682. doi: 10.3390/molecules26061682 . PMC   8002617 . PMID   33802855.
  10. Lee MS, Cha EY, Sul JY, Song IS, Kim JY (June 2011). "Chrysophanic acid blocks proliferation of colon cancer cells by inhibiting EGFR/mTOR pathway". Phytotherapy Research. 25 (6): 833–7. doi:10.1002/ptr.3323. PMID   21089180. S2CID   2937534.
  11. Burnstock G, Di Virgilio F (December 2013). "Purinergic signalling and cancer". Purinergic Signalling. 9 (4): 491–540. doi:10.1007/s11302-013-9372-5. PMC   3889385 . PMID   23797685.
  12. Zhang J, Yan C, Wang S, Hou Y, Xue G, Zhang L (May 2014). "Chrysophanol attenuates lead exposure-induced injury to hippocampal neurons in neonatal mice". Neural Regeneration Research. 9 (9): 924–30. doi: 10.4103/1673-5374.133141 . PMC   4146226 . PMID   25206913.
  13. Choi JS (June 2016). "Chrysophanic Acid Induces Necrosis but not Necroptosis in Human Renal Cell Carcinoma Caki-2 Cells". Journal of Cancer Prevention. 21 (2): 81–7. doi:10.15430/JCP.2016.21.2.81. PMC   4933431 . PMID   27390736.
  14. 1 2 3 Lin L, Yuan F, Liu Y, Zhong M, Xie T, Ni J, Li H (December 2019). "Hepatotoxicity and mechanism study of chrysophanol-8-O-glucoside in vitro". Biomedicine & Pharmacotherapy. 120: 109531. doi: 10.1016/j.biopha.2019.109531 . PMID   31648163.
  15. Seo EJ, Ngoc TM, Lee SM, Kim YS, Jung YS (2012). "Chrysophanol-8-O-glucoside, an anthraquinone derivative in rhubarb, has antiplatelet and anticoagulant activities". Journal of Pharmacological Sciences. 118 (2): 245–54. doi: 10.1254/jphs.11123fp . PMID   22302018.
  16. 1 2 Ni CH, Chen PY, Lu HF, Yang JS, Huang HY, Wu SH, et al. (May 2012). "Chrysophanol-induced necrotic-like cell death through an impaired mitochondrial ATP synthesis in Hep3B human liver cancer cells". Archives of Pharmacal Research. 35 (5): 887–95. doi:10.1007/s12272-012-0514-z. PMID   22644856. S2CID   5631532.

Further reading

Trybus W, Król T, Trybus E, Stachurska A, Król G (June 2021). "The potential antitumor effect of chrysophanol in relation to cervical cancer cells". Journal of Cellular Biochemistry. 122 (6): 639–652. doi:10.1002/jcb.29891. PMID   33417255. S2CID   231193505.