Neuroprotection

Last updated
A neuron observed under an optical microscope Neuronehisto.jpg
A neuron observed under an optical microscope

Neuroprotection refers to the relative preservation of neuronal structure and/or function. [1] In the case of an ongoing insult (a neurodegenerative insult) the relative preservation of neuronal integrity implies a reduction in the rate of neuronal loss over time, which can be expressed as a differential equation. [1] It is a widely explored treatment option for many central nervous system (CNS) disorders including neurodegenerative diseases, stroke, traumatic brain injury, spinal cord injury, and acute management of neurotoxin consumption (i.e. methamphetamine overdoses). Neuroprotection aims to prevent or slow disease progression and secondary injuries by halting or at least slowing the loss of neurons. [2] Despite differences in symptoms or injuries associated with CNS disorders, many of the mechanisms behind neurodegeneration are the same. Common mechanisms of neuronal injury include decreased delivery of oxygen and glucose to the brain, energy failure, increased levels in oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation. [3] [2] [4] [5] Of these mechanisms, neuroprotective treatments often target oxidative stress and excitotoxicity—both of which are highly associated with CNS disorders. Not only can oxidative stress and excitotoxicity trigger neuron cell death but when combined they have synergistic effects that cause even more degradation than on their own. [6] Thus limiting excitotoxicity and oxidative stress is a very important aspect of neuroprotection. Common neuroprotective treatments are glutamate antagonists and antioxidants, which aim to limit excitotoxicity and oxidative stress respectively.

Contents

Excitotoxicity

Glutamate excitotoxicity is one of the most important mechanisms known to trigger cell death in CNS disorders. Over-excitation of glutamate receptors, specifically NMDA receptors, allows for an increase in calcium ion (Ca2+) influx due to the lack of specificity in the ion channel opened upon glutamate binding. [6] [7] As Ca2+ accumulates in the neuron, the buffering levels of mitochondrial Ca2+ sequestration are exceeded, which has major consequences for the neuron. [6] Because Ca2+ is a secondary messenger and regulates a large number of downstream processes, accumulation of Ca2+ causes improper regulation of these processes, eventually leading to cell death. [8] [9] [10] Ca2+ is also thought to trigger neuroinflammation, a key component in all CNS disorders. [6]

Glutamate antagonists

Glutamate antagonists are the primary treatment used to prevent or help control excitotoxicity in CNS disorders. The goal of these antagonists is to inhibit the binding of glutamate to NMDA receptors such that accumulation of Ca2+ and therefore excitotoxicity can be avoided. Use of glutamate antagonists presents a huge obstacle in that the treatment must overcome selectivity such that binding is only inhibited when excitotoxicity is present. A number of glutamate antagonists have been explored as options in CNS disorders, but many are found to lack efficacy or have intolerable side effects. Glutamate antagonists are a hot topic of research. Below are some of the treatments that have promising results for the future:

Oxidative stress

Increased levels of oxidative stress can be caused in part by neuroinflammation, which is a highly recognized part of cerebral ischemia as well as many neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. [5] [6] The increased levels of oxidative stress are widely targeted in neuroprotective treatments because of their role in causing neuron apoptosis. Oxidative stress can directly cause neuron cell death or it can trigger a cascade of events that leads to protein misfolding, proteasomal malfunction, mitochondrial dysfunction, or glial cell activation. [2] [4] [5] [14] If one of these events is triggered, further neurodegradation is caused as each of these events causes neuron cell apoptosis. [4] [5] [14] By decreasing oxidative stress through neuroprotective treatments, further neurodegradation can be inhibited.

Antioxidants

Antioxidants are the primary treatment used to control oxidative stress levels. Antioxidants work to eliminate reactive oxygen species, which are the prime cause of neurodegradation. The effectiveness of antioxidants in preventing further neurodegradation is not only disease dependent but can also depend on gender, ethnicity, and age. Listed below are common antioxidants shown to be effective in reducing oxidative stress in at least one neurodegenerative disease:

Stimulants

NMDA receptor stimulants can lead to glutamate and calcium excitotoxicity and neuroinflammation. Some other stimulants, in appropriate doses, can however be neuroprotective.

Neuroprotectants (cerebroprotectants) for acute ischemic stroke

When applied to protecting the brain from the effects of acute ischemic stroke, neuroprotectants are often called cerebroprotectants. Over 150 drugs have been tested in clinical trials, leading to the regulatory approval of tissue plasminogen activator in several countries, the and approval of edaravone in Japan.

Other neuroprotective treatments

More neuroprotective treatment options exist that target different mechanisms of neurodegradation. Continued research is being done in an effort to find any method effective in preventing the onset or progression of neurodegenerative diseases or secondary injuries. These include:

See also

Related Research Articles

<span class="mw-page-title-main">Neurotoxin</span> Toxin harmful to nervous tissue

Neurotoxins are toxins that are destructive to nerve tissue. Neurotoxins are an extensive class of exogenous chemical neurological insults that can adversely affect function in both developing and mature nervous tissue. The term can also be used to classify endogenous compounds, which, when abnormally contacted, can prove neurologically toxic. Though neurotoxins are often neurologically destructive, their ability to specifically target neural components is important in the study of nervous systems. Common examples of neurotoxins include lead, ethanol, glutamate, nitric oxide, botulinum toxin, tetanus toxin, and tetrodotoxin. Some substances such as nitric oxide and glutamate are in fact essential for proper function of the body and only exert neurotoxic effects at excessive concentrations.

<span class="mw-page-title-main">NMDA receptor</span> Glutamate receptor and ion channel protein found in nerve cells

The N-methyl-D-aspartatereceptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and ion channel found in neurons. The NMDA receptor is one of three types of ionotropic glutamate receptors, the other two being AMPA and kainate receptors. Depending on its subunit composition, its ligands are glutamate and glycine (or D-serine). However, the binding of the ligands is typically not sufficient to open the channel as it may be blocked by Mg2+ ions which are only removed when the neuron is sufficiently depolarized. Thus, the channel acts as a “coincidence detector” and only once both of these conditions are met, the channel opens and it allows positively charged ions (cations) to flow through the cell membrane. The NMDA receptor is thought to be very important for controlling synaptic plasticity and mediating learning and memory functions.

Neurotoxicity is a form of toxicity in which a biological, chemical, or physical agent produces an adverse effect on the structure or function of the central and/or peripheral nervous system. It occurs when exposure to a substance – specifically, a neurotoxin or neurotoxicant– alters the normal activity of the nervous system in such a way as to cause permanent or reversible damage to nervous tissue. This can eventually disrupt or even kill neurons, which are cells that transmit and process signals in the brain and other parts of the nervous system. Neurotoxicity can result from organ transplants, radiation treatment, certain drug therapies, recreational drug use, exposure to heavy metals, bites from certain species of venomous snakes, pesticides, certain industrial cleaning solvents, fuels and certain naturally occurring substances. Symptoms may appear immediately after exposure or be delayed. They may include limb weakness or numbness, loss of memory, vision, and/or intellect, uncontrollable obsessive and/or compulsive behaviors, delusions, headache, cognitive and behavioral problems and sexual dysfunction. Chronic mold exposure in homes can lead to neurotoxicity which may not appear for months to years of exposure. All symptoms listed above are consistent with mold mycotoxin accumulation.

<span class="mw-page-title-main">Excitatory synapse</span> Sort of synapse

An excitatory synapse is a synapse in which an action potential in a presynaptic neuron increases the probability of an action potential occurring in a postsynaptic cell. Neurons form networks through which nerve impulses travels, each neuron often making numerous connections with other cells of neurons. These electrical signals may be excitatory or inhibitory, and, if the total of excitatory influences exceeds that of the inhibitory influences, the neuron will generate a new action potential at its axon hillock, thus transmitting the information to yet another cell.

<span class="mw-page-title-main">Excitotoxicity</span> Process that kills nerve cells

In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate receptors such as the NMDA receptor or AMPA receptor encounter excessive levels of the excitatory neurotransmitter, glutamate, significant neuronal damage might ensue. Excess glutamate allows high levels of calcium ions (Ca2+) to enter the cell. Ca2+ influx into cells activates a number of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes go on to damage cell structures such as components of the cytoskeleton, membrane, and DNA. In evolved, complex adaptive systems such as biological life it must be understood that mechanisms are rarely, if ever, simplistically direct. For example, NMDA in subtoxic amounts induces neuronal survival of otherwise toxic levels of glutamate.

<span class="mw-page-title-main">Dizocilpine</span> Chemical compound

Dizocilpine (INN), also known as MK-801, is a pore blocker of the N-Methyl-D-aspartate (NMDA) receptor, a glutamate receptor, discovered by a team at Merck in 1982. Glutamate is the brain's primary excitatory neurotransmitter. The channel is normally blocked with a magnesium ion and requires depolarization of the neuron to remove the magnesium and allow the glutamate to open the channel, causing an influx of calcium, which then leads to subsequent depolarization. Dizocilpine binds inside the ion channel of the receptor at several of PCP's binding sites thus preventing the flow of ions, including calcium (Ca2+), through the channel. Dizocilpine blocks NMDA receptors in a use- and voltage-dependent manner, since the channel must open for the drug to bind inside it. The drug acts as a potent anti-convulsant and probably has dissociative anesthetic properties, but it is not used clinically for this purpose because of the discovery of brain lesions, called Olney's lesions (see below), in laboratory rats. Dizocilpine is also associated with a number of negative side effects, including cognitive disruption and psychotic-spectrum reactions. It inhibits the induction of long term potentiation and has been found to impair the acquisition of difficult, but not easy, learning tasks in rats and primates. Because of these effects of dizocilpine, the NMDA receptor pore blocker ketamine is used instead as a dissociative anesthetic in human medical procedures. While ketamine may also trigger temporary psychosis in certain individuals, its short half-life and lower potency make it a much safer clinical option. However, dizocilpine is the most frequently used uncompetitive NMDA receptor antagonist in animal models to mimic psychosis for experimental purposes.

Molecular neuroscience is a branch of neuroscience that observes concepts in molecular biology applied to the nervous systems of animals. The scope of this subject covers topics such as molecular neuroanatomy, mechanisms of molecular signaling in the nervous system, the effects of genetics and epigenetics on neuronal development, and the molecular basis for neuroplasticity and neurodegenerative diseases. As with molecular biology, molecular neuroscience is a relatively new field that is considerably dynamic.

<span class="mw-page-title-main">Metabotropic glutamate receptor</span> Type of glutamate receptor

The metabotropic glutamate receptors, or mGluRs, are a type of glutamate receptor that are active through an indirect metabotropic process. They are members of the group C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatory neurotransmitter.

<span class="mw-page-title-main">Glutamate receptor</span> Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells

Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter. Glutamate receptors are responsible for the glutamate-mediated postsynaptic excitation of neural cells, and are important for neural communication, memory formation, learning, and regulation.

Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane. The family of glutamate transporters is composed of two primary subclasses: the excitatory amino acid transporter (EAAT) family and vesicular glutamate transporter (VGLUT) family. In the brain, EAATs remove glutamate from the synaptic cleft and extrasynaptic sites via glutamate reuptake into glial cells and neurons, while VGLUTs move glutamate from the cell cytoplasm into synaptic vesicles. Glutamate transporters also transport aspartate and are present in virtually all peripheral tissues, including the heart, liver, testes, and bone. They exhibit stereoselectivity for L-glutamate but transport both L-aspartate and D-aspartate.

<span class="mw-page-title-main">Neurodegenerative disease</span> Central nervous system disease

A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, tauopathies, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.

<span class="mw-page-title-main">NMDA receptor antagonist</span> Class of anesthetics

NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the N-Methyl-D-aspartate receptor (NMDAR). They are commonly used as anesthetics for human and non-human animals; the state of anesthesia they induce is referred to as dissociative anesthesia.

<span class="mw-page-title-main">Quisqualic acid</span> Chemical compound

Quisqualic acid is an agonist of the AMPA, kainate, and group I metabotropic glutamate receptors. It is one of the most potent AMPA receptor agonists known. It causes excitotoxicity and is used in neuroscience to selectively destroy neurons in the brain or spinal cord. Quisqualic acid occurs naturally in the seeds of Quisqualis species.

<span class="mw-page-title-main">Cystine/glutamate transporter</span> Protein found in humans

Cystine/glutamate transporter is an antiporter that in humans is encoded by the SLC7A11 gene.

<span class="mw-page-title-main">Quinolinic acid</span> Dicarboxylic acid with pyridine backbone

Quinolinic acid, also known as pyridine-2,3-dicarboxylic acid, is a dicarboxylic acid with a pyridine backbone. It is a colorless solid. It is the biosynthetic precursor to niacin.

<span class="mw-page-title-main">Eliprodil</span> Chemical compound

Eliprodil is an NMDA antagonist drug candidate which selectively inhibits the NR2B (GLUN2B) subtype NMDA receptor at submicromolar concentrations. Eliprodil failed a Phase III clinical trial for the treatment of acute ischemic stroke in 1996, sponsored by Synthélabo Recherche.

<span class="mw-page-title-main">Nitromemantine</span> Chemical compound

Nitromemantine is a derivative of memantine developed in 2006 for the treatment of Alzheimer's disease. It has been shown to reduce excitotoxicity mediated by over-activation of the glutamatergic system, by blocking NMDA receptors.

<span class="mw-page-title-main">Glutamate (neurotransmitter)</span> Anion of glutamic acid in its role as a neurotransmitter

In neuroscience, glutamate is the anion of glutamic acid in its role as a neurotransmitter. It is by a wide margin the most abundant excitatory neurotransmitter in the vertebrate nervous system. It is used by every major excitatory function in the vertebrate brain, accounting in total for well over 90% of the synaptic connections in the human brain. It also serves as the primary neurotransmitter for some localized brain regions, such as cerebellum granule cells.

Acquired neuroprotection is a synaptic-activity-dependent form of adaptation in the nervous system that renders neurons more resistant to harmful conditions. The term was coined by Hilmar Bading. This use-dependent enhancement of cellular survival activity requires changes in gene expression triggered by neuronal activity and nuclear calcium signaling. In rodents, components of the neuroprotective gene program can reduce brain damage caused by seizure-like activity or by a stroke. In acute and chronic neurodegenerative diseases, gene regulatory events important for acquired neuroprotection are antagonized by extrasynaptic NMDA receptor signaling leading to increased vulnerability, loss of structural integrity, and bioenergetics dysfunction.

Extrasynaptic NMDA receptors are glutamate-gated neurotransmitter receptors that are localized to non-synaptic sites on the neuronal cell surface. In contrast to synaptic NMDA receptors that promote acquired neuroprotection and synaptic plasticity, extrasynaptic NMDA receptors are coupled to activation of death-signaling pathways. Extrasynaptic NMDA receptors are responsible for initiating excitotoxicity and have been implicated in the etiology of neurodegenerative diseases, including stroke, Huntington’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS).

References

  1. 1 2 Casson RJ, Chidlow G, Ebneter A, Wood JP, Crowston J, Goldberg I (2012). "Translational neuroprotection research in glaucoma: a review of definitions and principles". Clinical & Experimental Ophthalmology. 40 (4): 350–357. doi: 10.1111/j.1442-9071.2011.02563.x . PMID   22697056.
  2. 1 2 3 Seidl SE, Potashkin JA (2011). "The promise of neuroprotective agents in Parkinson's disease". Frontiers in Neurology. 2: 68. doi: 10.3389/fneur.2011.00068 . PMC   3221408 . PMID   22125548.
  3. Kaur H, Prakash A, Medhi B (2013). "Drug therapy in stroke: from preclinical to clinical studies". Pharmacology. 92 (5–6): 324–334. doi: 10.1159/000356320 . PMID   24356194.
  4. 1 2 3 4 5 Dunnett SB, Björklund A (June 1999). "Prospects for new restorative and neuroprotective treatments in Parkinson's disease". Nature. 399 (6738 Suppl): A32–A39. doi:10.1038/399a032. PMID   10392578. S2CID   17462928.
  5. 1 2 3 4 5 Andersen JK (July 2004). "Oxidative stress in neurodegeneration: cause or consequence?". Nature Medicine. 10 Suppl (7): S18–S25. doi:10.1038/nrn1434. PMID   15298006. S2CID   9569296.
  6. 1 2 3 4 5 Zádori D, Klivényi P, Szalárdy L, Fülöp F, Toldi J, Vécsei L (November 2012). "Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders". Journal of the Neurological Sciences. 322 (1–2): 187–191. doi:10.1016/j.jns.2012.06.004. PMID   22749004. S2CID   25867213.
  7. 1 2 Zhang C, Du F, Shi M, Ye R, Cheng H, Han J, et al. (January 2012). "Ginsenoside Rd protects neurons against glutamate-induced excitotoxicity by inhibiting ca(2+) influx". Cellular and Molecular Neurobiology. 32 (1): 121–128. doi:10.1007/s10571-011-9742-x. PMID   21811848. S2CID   17935161.
  8. Sattler R, Tymianski M (2000). "Molecular mechanisms of calcium-dependent excitotoxicity". Journal of Molecular Medicine. 78 (1): 3–13. doi:10.1007/s001090000077. PMID   10759025. S2CID   20740220.
  9. Sattler R, Tymianski M (2001). "Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death". Molecular Neurobiology. 24 (1–3): 107–129. doi:10.1385/MN:24:1-3:107. PMID   11831548. S2CID   23999220.
  10. 1 2 Luoma JI, Stern CM, Mermelstein PG (August 2012). "Progesterone inhibition of neuronal calcium signaling underlies aspects of progesterone-mediated neuroprotection". The Journal of Steroid Biochemistry and Molecular Biology. 131 (1–2): 30–36. doi:10.1016/j.jsbmb.2011.11.002. PMC   3303940 . PMID   22101209.
  11. Liu SB, Zhang N, Guo YY, Zhao R, Shi TY, Feng SF, et al. (April 2012). "G-protein-coupled receptor 30 mediates rapid neuroprotective effects of estrogen via depression of NR2B-containing NMDA receptors". The Journal of Neuroscience. 32 (14): 4887–4900. doi:10.1523/JNEUROSCI.5828-11.2012. PMC   6620914 . PMID   22492045.
  12. Yan J, Xu Y, Zhu C, Zhang L, Wu A, Yang Y, et al. (2011). Calixto JB (ed.). "Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the association with anti-inflammatory responses". PLOS ONE. 6 (6): e20945. Bibcode:2011PLoSO...620945Y. doi: 10.1371/journal.pone.0020945 . PMC   3120752 . PMID   21731633.
  13. Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M (May 2006). "Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity". The European Journal of Neuroscience. 23 (10): 2611–2622. CiteSeerX   10.1.1.574.474 . doi:10.1111/j.1460-9568.2006.04787.x. PMID   16817864. S2CID   14461534.
  14. 1 2 Liu T, Bitan G (March 2012). "Modulating self-assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: strategies and mechanisms". ChemMedChem. 7 (3): 359–374. doi:10.1002/cmdc.201100585. PMID   22323134. S2CID   14427130.
  15. Berk M, Malhi GS, Gray LJ, Dean OM (March 2013). "The promise of N-acetylcysteine in neuropsychiatry". Trends in Pharmacological Sciences. 34 (3): 167–177. doi:10.1016/j.tips.2013.01.001. PMID   23369637.
  16. Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M (April 2013). "Putative neuroprotective agents in neuropsychiatric disorders". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 42: 135–145. doi:10.1016/j.pnpbp.2012.11.007. hdl: 11343/43868 . PMID   23178231. S2CID   6678887.
  17. Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, Lamari FN (November 2006). "Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents". Journal of Agricultural and Food Chemistry. 54 (23): 8762–8768. doi:10.1021/jf061932a. PMID   17090119.
  18. Ochiai T, Shimeno H, Mishima K, Iwasaki K, Fujiwara M, Tanaka H, et al. (April 2007). "Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo". Biochimica et Biophysica Acta (BBA) - General Subjects. 1770 (4): 578–584. doi:10.1016/j.bbagen.2006.11.012. PMID   17215084.
  19. Zheng YQ, Liu JX, Wang JN, Xu L (March 2007). "Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia". Brain Research. 1138: 86–94. doi:10.1016/j.brainres.2006.12.064. PMID   17274961. S2CID   25495517.
  20. Behl C, Skutella T, Lezoualc'h F, Post A, Widmann M, Newton CJ, Holsboer F (April 1997). "Neuroprotection against oxidative stress by estrogens: structure-activity relationship". Molecular Pharmacology. 51 (4): 535–541. doi:10.1124/mol.51.4.535. PMID   9106616. S2CID   1197332.
  21. Denny Joseph KM, Muralidhara M (May 2012). "Fish oil prophylaxis attenuates rotenone-induced oxidative impairments and mitochondrial dysfunctions in rat brain". Food and Chemical Toxicology. 50 (5): 1529–1537. doi:10.1016/j.fct.2012.01.020. PMID   22289576.
  22. Tikka TM, Koistinaho JE (June 2001). "Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia". Journal of Immunology. 166 (12): 7527–7533. doi: 10.4049/jimmunol.166.12.7527 . PMID   11390507.
  23. Kuang X, Scofield VL, Yan M, Stoica G, Liu N, Wong PK (August 2009). "Attenuation of oxidative stress, inflammation and apoptosis by minocycline prevents retrovirus-induced neurodegeneration in mice". Brain Research. 1286: 174–184. doi:10.1016/j.brainres.2009.06.007. PMC   3402231 . PMID   19523933.
  24. Yu W, Fu YC, Wang W (March 2012). "Cellular and molecular effects of resveratrol in health and disease". Journal of Cellular Biochemistry. 113 (3): 752–759. doi:10.1002/jcb.23431. PMID   22065601. S2CID   26185378.
  25. Simão F, Matté A, Matté C, Soares FM, Wyse AT, Netto CA, Salbego CG (October 2011). "Resveratrol prevents oxidative stress and inhibition of Na(+)K(+)-ATPase activity induced by transient global cerebral ischemia in rats". The Journal of Nutritional Biochemistry. 22 (10): 921–928. doi:10.1016/j.jnutbio.2010.07.013. PMID   21208792.
  26. Nivison-Smith L, Acosta ML, Misra S, O'Brien BJ, Kalloniatis M (January 2014). "Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina". Neurochemistry International. 66: 1–14. doi:10.1016/j.neuint.2014.01.003. PMID   24412512. S2CID   27208165.
  27. Herrera-Mundo N, Sitges M (January 2013). "Vinpocetine and α-tocopherol prevent the increase in DA and oxidative stress induced by 3-NPA in striatum isolated nerve endings". Journal of Neurochemistry. 124 (2): 233–240. doi: 10.1111/jnc.12082 . PMID   23121080.
  28. Zhao YY, Yu JZ, Li QY, Ma CG, Lu CZ, Xiao BG (May 2011). "TSPO-specific ligand vinpocetine exerts a neuroprotective effect by suppressing microglial inflammation". Neuron Glia Biology. 7 (2–4): 187–197. doi:10.1017/S1740925X12000129. PMID   22874716.
  29. Bönöczk P, Panczel G, Nagy Z (June 2002). "Vinpocetine increases cerebral blood flow and oxygenation in stroke patients: a near infrared spectroscopy and transcranial Doppler study". European Journal of Ultrasound. 15 (1–2): 85–91. doi:10.1016/s0929-8266(02)00006-x. PMID   12044859.
  30. Hampson AJ, Grimaldi M, Lolic M, Wink D, Rosenthal R, Axelrod J (2000). "Neuroprotective antioxidants from marijuana". Annals of the New York Academy of Sciences. 899 (1): 274–282. Bibcode:2000NYASA.899..274H. doi:10.1111/j.1749-6632.2000.tb06193.x. PMID   10863546. S2CID   39496546.
  31. Miller ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E (January 2005). "Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality". Annals of Internal Medicine. 142 (1): 37–46. doi: 10.7326/0003-4819-142-1-200501040-00110 . PMID   15537682.
  32. Kelton MC, Kahn HJ, Conrath CL, Newhouse PA (2000). "The effects of nicotine on Parkinson's disease". Brain and Cognition. 43 (1–3): 274–282. PMID   10857708.
  33. 1 2 Ross GW, Petrovitch H (2001). "Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson's disease". Drugs & Aging. 18 (11): 797–806. doi:10.2165/00002512-200118110-00001. PMID   11772120. S2CID   23840476.
  34. Barreto GE, Iarkov A, Moran VE (2014). "Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson's disease". Frontiers in Aging Neuroscience. 6: 340. doi: 10.3389/fnagi.2014.00340 . PMC   4288130 . PMID   25620929.
  35. Xu K, Xu YH, Chen JF, Schwarzschild MA (May 2010). "Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson's disease". Neuroscience. 167 (2): 475–481. doi:10.1016/j.neuroscience.2010.02.020. PMC   2849921 . PMID   20167258.
  36. Aoyama K, Matsumura N, Watabe M, Wang F, Kikuchi-Utsumi K, Nakaki T (May 2011). "Caffeine and uric acid mediate glutathione synthesis for neuroprotection". Neuroscience. 181: 206–215. doi:10.1016/j.neuroscience.2011.02.047. PMID   21371533. S2CID   32651665.
  37. Li W, Lee MK (June 2005). "Antiapoptotic property of human alpha-synuclein in neuronal cell lines is associated with the inhibition of caspase-3 but not caspase-9 activity". Journal of Neurochemistry. 93 (6): 1542–1550. doi: 10.1111/j.1471-4159.2005.03146.x . PMID   15935070.
  38. Gunasekaran R, Narayani RS, Vijayalakshmi K, Alladi PA, Shobha K, Nalini A, et al. (February 2009). "Exposure to cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients alters Nav1.6 and Kv1.6 channel expression in rat spinal motor neurons". Brain Research. 1255: 170–179. doi:10.1016/j.brainres.2008.11.099. PMID   19109933. S2CID   38399661.
  39. Sinclair HL, Andrews PJ (2010). "Bench-to-bedside review: Hypothermia in traumatic brain injury". Critical Care. 14 (1): 204. doi: 10.1186/cc8220 . PMC   2875496 . PMID   20236503.
  40. Leeds PR, Yu F, Wang Z, Chiu CT, Zhang Y, Leng Y, et al. (June 2014). "A new avenue for lithium: intervention in traumatic brain injury". ACS Chemical Neuroscience. 5 (6): 422–433. doi:10.1021/cn500040g. PMC   4063503 . PMID   24697257.
  41. Bazan NG (2006). "The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling". Cellular and Molecular Neurobiology. 26 (4–6): 901–913. doi:10.1007/s10571-006-9064-6. PMID   16897369. S2CID   6059884.
  42. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. (April 2015). "Neuroinflammation in Alzheimer's disease". The Lancet. Neurology. 14 (4): 388–405. doi:10.1016/S1474-4422(15)70016-5. PMC   5909703 . PMID   25792098.
  43. Serhan CN, Chiang N, Dalli J (May 2015). "The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution". Seminars in Immunology. 27 (3): 200–215. doi:10.1016/j.smim.2015.03.004. PMC   4515371 . PMID   25857211.

Further reading

Articles

Books