Denufosol

Last updated
Denufosol
Denufosol.svg
Clinical data
Other namesINS37217
2'-Desoxycytidine (5')tetraphospho(5')uridine
Routes of
administration
Inhalation
ATC code
  • none
Legal status
Legal status
  • Investigational
Identifiers
  • [[(3S,5R)-5-(4-amino-2-oxopyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
Chemical and physical data
Formula C18H27N5O21P4
Molar mass 773.323 g·mol−1
3D model (JSmol)
  • C1[C@@H]([C@H](O[C@H]1N2C=CC(=NC2=O)N)COP(=O)(O)OP(=O)(O)OP(=O)(O)OP(=O)(O)OC[C@@H]3[C@H]([C@H]([C@@H](O3)N4C=CC(=O)NC4=O)O)O)O
  • InChI=1S/C18H27N5O21P4/c19-11-1-3-22(17(28)20-11)13-5-8(24)9(40-13)6-38-45(30,31)42-47(34,35)44-48(36,37)43-46(32,33)39-7-10-14(26)15(27)16(41-10)23-4-2-12(25)21-18(23)29/h1-4,8-10,13-16,24,26-27H,5-7H2,(H,30,31)(H,32,33)(H,34,35)(H,36,37)(H2,19,20,28)(H,21,25,29)/t8-,9+,10+,13+,14+,15+,16+/m0/s1
  • Key:FPNPSEMJLALQSA-MIYUEGBISA-N
   (verify)

Denufosol (INN) is an inhaled drug for the treatment of cystic fibrosis, being developed by Inspire Pharmaceuticals and sponsored by the Cystic Fibrosis Foundation. It was tested in two Phase III clinical trials, TIGER-1 and TIGER-2. Initially, in the first Phase III trial, TIGER-1, the compound showed significant results as compared with placebo. [1] In the second Phase III trial, TIGER-2, the compound did not meet the primary endpoint, a significant change in baseline FEV1 (forced expiratory volume in one second) at the week 48 endpoint as compared to placebo. [2] As of 2011, no additional clinical studies are being conducted with the compound.

Contents

The drug was also investigated for the treatment of retinal detachment and other retinal diseases, but trials were terminated in 2006. [3]

Application

In Phase III studies, denufosol was orally inhaled by patients with cystic fibrosis three times a day using a jet nebulizer. To be effective, it had to reach the deeper parts of the lung (bronchioles), making it unsuitable for children under five years of age. [4]

Mechanism of action

Cystic fibrosis is characterised by a defect of the chloride channel CFTR (cystic fibrosis transmembrane conductance regulator) on epithelial cells in the lungs. The CFTR regulates the components of sweat, digestive juices, and mucus. Defects lead to a viscous, dehydrated mucus, hindering mucociliary clearance. Denufosol is an agonist at the P2Y2 subtype of purinergic receptors which via its associated G protein leads to activation of alternative chloride channel. Activating this alternate chloride channel theoretically increases ion transport in cystic fibrosis patients which compensates the effects caused by the non-functioning CFTR. [5]

Chemistry

Denufosol consists of two nucleosides (composed of a nucleobase and a sugar each), deoxycytidine and uridine, linked on their sugars by four units of phosphoric acid. It is used in form of its tetrasodium salt.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Cystic fibrosis</span> Autosomal recessive disease mostly affecting the lungs

Cystic fibrosis (CF) is a rare genetic disorder that affects mostly the lungs, but also the pancreas, liver, kidneys, and intestine. Long-term issues include difficulty breathing and coughing up mucus as a result of frequent lung infections. Other signs and symptoms may include sinus infections, poor growth, fatty stool, clubbing of the fingers and toes, and infertility in most males. Different people may have different degrees of symptoms.

<span class="mw-page-title-main">Bronchiectasis</span> Disease of the lungs

Bronchiectasis is a disease in which there is permanent enlargement of parts of the airways of the lung. Symptoms typically include a chronic cough with mucus production. Other symptoms include shortness of breath, coughing up blood, and chest pain. Wheezing and nail clubbing may also occur. Those with the disease often get lung infections.

<span class="mw-page-title-main">Cystic fibrosis transmembrane conductance regulator</span> Mammalian protein found in Homo sapiens

Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein and anion channel in vertebrates that is encoded by the CFTR gene.

<span class="mw-page-title-main">Bronchoconstriction</span> Constriction of the terminal airways in the lungs

Bronchoconstriction is the constriction of the airways in the lungs due to the tightening of surrounding smooth muscle, with consequent coughing, wheezing, and shortness of breath.

The sweat test measures the concentration of chloride that is excreted in sweat. It is used to screen for cystic fibrosis (CF). Due to defective chloride channels (CFTR), the concentration of chloride in sweat is elevated in individuals with CF.

<span class="mw-page-title-main">Seliciclib</span> Chemical compound

Seliciclib is an experimental drug candidate in the family of pharmacological cyclin-dependent kinase (CDK) inhibitors that preferentially inhibit multiple enzyme targets including CDK2, CDK7 and CDK9, which alter the growth phase or state within the cell cycle of treated cells. Seliciclib is being developed by Cyclacel.This is a phase II, dose ranging, multicenter, randomized, double-blind, placebo-controlled study.

Allergic bronchopulmonary aspergillosis (ABPA) is a condition characterised by an exaggerated response of the immune system to the fungus Aspergillus. It occurs most often in people with asthma or cystic fibrosis. Aspergillus spores are ubiquitous in soil and are commonly found in the sputum of healthy individuals. A. fumigatus is responsible for a spectrum of lung diseases known as aspergilloses.

<span class="mw-page-title-main">Epithelial sodium channel</span> Group of membrane proteins

The epithelial sodium channel(ENaC), (also known as amiloride-sensitive sodium channel) is a membrane-bound ion channel that is selectively permeable to sodium ions (Na+). It is assembled as a heterotrimer composed of three homologous subunits α or δ, β, and γ, These subunits are encoded by four genes: SCNN1A, SCNN1B, SCNN1G, and SCNN1D. The ENaC is involved primarily in the reabsorption of sodium ions at the collecting ducts of the kidney's nephrons. In addition to being implicated in diseases where fluid balance across epithelial membranes is perturbed, including pulmonary edema, cystic fibrosis, COPD and COVID-19, proteolyzed forms of ENaC function as the human salt taste receptor.

<span class="mw-page-title-main">Ataluren</span> Chemical compound

Ataluren, sold under the brand name Translarna, is a medication for the treatment of Duchenne muscular dystrophy. It was designed by PTC Therapeutics.

<span class="mw-page-title-main">Channel blocker</span> Molecule able to block protein channels, frequently used as pharmaceutical

A channel blocker is the biological mechanism in which a particular molecule is used to prevent the opening of ion channels in order to produce a physiological response in a cell. Channel blocking is conducted by different types of molecules, such as cations, anions, amino acids, and other chemicals. These blockers act as ion channel antagonists, preventing the response that is normally provided by the opening of the channel.

<span class="mw-page-title-main">Eritoran</span>

Eritoran is an investigational drug for the treatment of severe sepsis, an excessive inflammatory response to an infection.

Transepithelial potential difference (TEPD) is the voltage across an epithelium, and is the sum of the membrane potentials for the outer and inner cell membranes.

<span class="mw-page-title-main">Ivacaftor</span> Pharmaceutical medication used to treat cystic fibrosis

Ivacaftor is a medication used to treat cystic fibrosis in people with certain mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, who account for 4–5% cases of cystic fibrosis. It is also included in combination medications, lumacaftor/ivacaftor, tezacaftor/ivacaftor, and elexacaftor/tezacaftor/ivacaftor which are used to treat people with cystic fibrosis.

<span class="mw-page-title-main">Nintedanib</span> Chemical compound

Nintedanib, sold under the brand names Ofev and Vargatef, is an oral medication used for the treatment of idiopathic pulmonary fibrosis and along with other medications for some types of non-small-cell lung cancer.

<span class="mw-page-title-main">Crofelemer</span> Pharmaceutical drug

Crofelemer is an antidiarrheal indicated for the symptomatic relief of non-infectious diarrhea in adult patients with HIV/AIDS on antiretroviral therapy. Other possible uses include diarrhea in children, acute infectious diarrhea, and diarrhea in patients with irritable bowel syndrome. It is a purified oligomeric proanthocyanidin from "dragon's blood", the sap of the South American tree Croton lechleri.

<span class="mw-page-title-main">Tezacaftor</span> Chemical compound

Tezacaftor is a drug used for the treatment of cystic fibrosis (CF) in people six years and older, who have a F508del mutation, the most common type of mutation in the CFTR gene. It is sold as a fixed-dose combination with ivacaftor under the brand name Symdeko. It was approved by the U.S. FDA in 2018. The combination of elexacaftor, tezacaftor, and ivacaftor is being sold as Trikafta.

Elexacaftor/tezacaftor/ivacaftor, sold under the brand names Trikafta (US) and Kaftrio (EU), is a fixed-dose combination medication used to treat cystic fibrosis. Elexacaftor/tezacaftor/ivacaftor is composed of a combination of ivacaftor, a chloride channel opener, and elexacaftor and tezacaftor, CFTR modulators.

<span class="mw-page-title-main">Cystic fibrosis and race</span>

Underrepresented populations, especially black and hispanic populations with cystic fibrosis are often not successfully diagnosed. This is in part due to the minimal dissemination of existing data on patients from these underrepresented groups. While white populations do appear to experience a higher frequency of cystic fibrosis, other ethnicities are also affected and not always by the same biological mechanisms. Thus, many healthcare and treatment options are less reliable or unavailable to underrepresented populations. This issue affects the level at which public health needs are being met across the world.

Paul Adrian Negulescu is an American-Romanian cell biologist. He is the Senior Vice President and Site Head of the San Diego Research Center of American pharmaceutical company Vertex Pharmaceuticals. He received the 2022 Shaw Prize in Life science and medicine, together with Michael J. Welsh, for their work that uncovered the etiology of cystic fibrosis and developed effective medications.

Michael James Welsh is an American pulmonologist. He is the current Roy J. Carver Chair in Biomedical Research, the Professor of Internal Medicine in Pulmonary, Critical Care and Occupational Medicine at the Department of Internal Medicine, and the Director of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa. He is also a professor at the Department of Neurosurgery, Department of Neurology, and Department of Molecular Physiology and Biophysics. He received the 2022 Shaw Prize in Life science and Medicine, together with Paul A. Negulescu, for their work that uncovered the etiology of cystic fibrosis and developed effective medications.

References

  1. Accurso FJ, Moss RB, Wilmott RW, Anbar RD, Schaberg AE, Durham TA, Ramsey BW (March 2011). "Denufosol tetrasodium in patients with cystic fibrosis and normal to mildly impaired lung function". American Journal of Respiratory and Critical Care Medicine. 183 (5): 627–34. doi:10.1164/rccm.201008-1267OC. PMID   21169471.
  2. "Inspire Announces Results of Second Phase 3 Trial with Denufosol for Cystic Fibrosis". Archived from the original on 2012-03-22. Retrieved 2011-04-03.
  3. Clinical trial number NCT00083967 for "Study of Denufosol (INS37217) in Subjects With Rhegmatogenous Retinal Detachment" at ClinicalTrials.gov
  4. Spreitzer H (14 March 2011). "Neue Wirkstoffe – Denufosol". Österreichische Apothekerzeitung (in German) (6/2011): 10.
  5. Kellerman D, Rossi Mospan A, Engels J, Schaberg A, Gorden J, Smiley L (August 2008). "Denufosol: a review of studies with inhaled P2Y(2) agonists that led to Phase 3". Pulmonary Pharmacology & Therapeutics. 21 (4): 600–7. doi:10.1016/j.pupt.2007.12.003. PMID   18276176.