4-Methylamphetamine

Last updated

4-Methylamphetamine
4-Methylamphetamine.svg
4-Methylamphetamine molecule ball.png
Clinical data
Trade names Aptrol
Other names4-MA; PAL-313; PAL313; p-TAP; Normephedrine
Routes of
administration
Oral, intranasal, injection,
ATC code
  • none
Legal status
Legal status
Pharmacokinetic data
Elimination half-life 6–12 hours
Excretion Urine
Identifiers
  • 1-(4-methylphenyl)propan-2-amine
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C10H15N
Molar mass 149.237 g·mol−1
3D model (JSmol)
  • NC(Cc1ccc(cc1)C)C
  • InChI=1S/C10H15N/c1-8-3-5-10(6-4-8)7-9(2)11/h3-6,9H,7,11H2,1-2H3 Yes check.svgY
  • Key:ZDHZDWSHLNBTEB-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

4-Methylamphetamine (4-MA), also known by the former proposed brand name Aptrol, is a stimulant and anorectic drug of the amphetamine family. It is structurally related to mephedrone (4-methylmethcathinone).

Contents

Pharmacology

In vitro , 4-methylamphetamine acts as a potent and well-balanced serotonin, norepinephrine, and dopamine releasing agent (SNDRA) with EC50 Tooltip half-maximal effective concentration values of 53.4 nM, 22.2 nM, and 44.1 nM at the serotonin, norepinephrine, and dopamine transporters, respectively. [1]

However, more recent in vivo studies that involved performing microdialysis on rats showed a different trend. These studies showed that 4-methylamphetamine is much more potent at elevating serotonin (~18 x baseline) relative to dopamine (~5 x baseline). The authors speculated that this is because 5-HT release dampens DA release through some mechanism. For example, it was suggested that a possible cause for this could be activation of 5HT2C receptors since this is known to inhibit DA release. In addition there are alternative explanations such as 5-HT release then going on to encourage GABA release, which has an inhibitory effect on DA neurons. [2]

Monoamine release of 4-methylamphetamine and related agents (EC50 Tooltip Half maximal effective concentration, nM)
Compound NE Tooltip Norepinephrine DA Tooltip Dopamine 5-HT Tooltip SerotoninRef
Dextroamphetamine 6.6–10.25.8–24.8698–1,765 [3] [4] [5] [6]
Dextromethamphetamine 12.3–14.38.5–40.4736–1,292 [3] [7] [5] [6]
4-Methylamphetamine 22.244.153.4 [8] [9] [5]
4-Methylmethamphetamine (mephedrine)66.941.367.4 [10] [11]
4-Methylcathinone (normephedrone)100220210 [12] [13] [14]
4-Methylmethcathinone (mephedrone)58–62.749.1–51118.3–122 [7] [4] [15] [16] [17]
Notes: The smaller the value, the more strongly the drug releases the neurotransmitter. The assays were done in rat brain synaptosomes and human potencies may be different. See also Monoamine releasing agent § Activity profiles for a larger table with more compounds. Refs: [18] [19]

Research

4-MA was investigated as an appetite suppressant in 1952 and was even given a trade name, Aptrol, but development was apparently never completed. [20] More recently it has been reported as a novel designer drug.

In animal studies, 4-MA was shown to have the lowest rate of self-administration out of a range of similar drugs tested (the others being 3-methylamphetamine, 4-fluoroamphetamine, and 3-fluoroamphetamine), likely as a result of having the highest potency for releasing serotonin relative to dopamine. [1] [21]

Society and culture

More than a dozen deaths were reported throughout Europe in 2012-2013 after consumption of amphetamine ('speed') contaminated with 4-methylamphetamine. [22] [23] [24]

See also

Related Research Articles

<span class="mw-page-title-main">Methcathinone</span> Psychoactive stimulant

Methcathinone is a monoamine alkaloid and psychoactive stimulant, a substituted cathinone. It is used as a recreational drug due to its potent stimulant and euphoric effects and is considered to be addictive, with both physical and psychological withdrawal occurring if its use is discontinued after prolonged or high-dosage administration. It is usually snorted, but can be smoked, injected, or taken orally.

<span class="mw-page-title-main">Phentermine</span> Weight loss medication

Phentermine, sold under the brand name Adipex-P among others, is a medication used together with diet and exercise to treat obesity. It is available by itself or as the combination phentermine/topiramate. Phentermine is taken by mouth.

<span class="mw-page-title-main">Phenmetrazine</span> Chemical compound

Phenmetrazine, sold under the brand name Preludin among others, is a stimulant drug first synthesized in 1952 and originally used as an appetite suppressant, but withdrawn from the market in the 1980s due to widespread misuse. It was initially replaced by its analogue phendimetrazine which functions as a prodrug to phenmetrazine, but now it is rarely prescribed, due to concerns of misuse and addiction. Chemically, phenmetrazine is a substituted amphetamine containing a morpholine ring or a substituted phenylmorpholine.

<span class="mw-page-title-main">4-Methylaminorex</span> Group of stereoisomers

4-Methylaminorex is a stimulant drug of the 2-amino-5-aryloxazoline group that was first synthesized in 1960 by McNeil Laboratories. It is also known by its street name "U4Euh" ("Euphoria"). It is banned in many countries as a stimulant. 4-Methylaminorex has effects comparable to methamphetamine but with a longer duration.

<span class="mw-page-title-main">Aminorex</span> Chemical compound

Aminorex, sold under the brand names Menocil and Apiquel among others, is a weight loss (anorectic) stimulant drug. It was withdrawn from the market after it was found to cause pulmonary hypertension (PPH). In the United States, aminorex is a Schedule I controlled substance.

<span class="mw-page-title-main">Chlorphentermine</span> Weight loss medication

Chlorphentermine, sold under the brand names Apsedon, Desopimon, and Lucofen, is a serotonergic appetite suppressant of the amphetamine family. Developed in 1962, it is the para-chloro derivative of the better-known appetite suppressant phentermine, which is still in current use.

<span class="mw-page-title-main">Etilamfetamine</span> Chemical compound

Etilamfetamine, also known as N-ethylamphetamine and formerly sold under the brand names Apetinil and Adiparthrol, is a stimulant drug of the amphetamine family. It was invented in the early 20th century and was subsequently used as an anorectic or appetite suppressant in the 1950s, but was not as commonly used as other amphetamines such as amphetamine, methamphetamine, and benzphetamine, and was largely discontinued once newer drugs such as phenmetrazine were introduced.

<span class="mw-page-title-main">Propylamphetamine</span> Chemical compound

Propylamphetamine is a psychostimulant of the amphetamine family which was never marketed. It was first developed in the 1970s, mainly for research into the metabolism of, and as a comparison tool to, other amphetamines.

<span class="mw-page-title-main">Naphthylaminopropane</span> Chemical compound

Naphthylaminopropane, also known as naphthylisopropylamine (NIPA), is an experimental drug that was under investigation for the treatment of alcohol and stimulant addiction.

<span class="mw-page-title-main">Norfenfluramine</span> Never-marketed drug of the amphetamine family

Norfenfluramine, or 3-trifluoromethylamphetamine, is a never-marketed drug of the amphetamine family and a major active metabolite of the appetite suppressants fenfluramine and benfluorex. The compound is a racemic mixture of two enantiomers with differing activities, dexnorfenfluramine and levonorfenfluramine.

<span class="mw-page-title-main">Monoamine releasing agent</span> Class of compounds

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of one or more monoamine neurotransmitters from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitters and hence enhanced signaling by those neurotransmitters. The monoamine neurotransmitters include serotonin, norepinephrine, and dopamine; MRAs can induce the release of one or more of these neurotransmitters.

<span class="mw-page-title-main">Dopamine releasing agent</span> Type of drug

A dopamine releasing agent (DRA) is a type of drug which induces the release of dopamine in the body and/or brain.

A serotonin–dopamine releasing agent (SDRA) is a type of drug which induces the release of serotonin and dopamine in the body and/or brain.

<span class="mw-page-title-main">4-Methylmethamphetamine</span> Stimulant and entactogen drug of the amphetamine class

4-Methylmethamphetamine (4-MMA), also known as mephedrine, is a putative stimulant and entactogen drug of the amphetamine family. It acts as a serotonin–norepinephrine–dopamine releasing agent (SNDRA). The drug is the β-deketo analogue of mephedrone and the N-methyl analogue of 4-methylamphetamine (4-MA).

<span class="mw-page-title-main">Substituted cathinone</span> Class of chemical compounds

Substituted cathinones, or simply cathinones, which include some stimulants and entactogens, are derivatives of cathinone. They feature a phenethylamine core with an alkyl group attached to the alpha carbon, and a ketone group attached to the beta carbon, along with additional substitutions. Cathinone occurs naturally in the plant khat whose leaves are chewed as a recreational drug.

<span class="mw-page-title-main">4,4'-Dimethylaminorex</span> Chemical compound

4,4'-Dimethylaminorex, sometimes referred to by the street name "Serotoni", is a psychostimulant and entactogen designer drug related to aminorex, 4-methylaminorex, and pemoline. It was first detected in the Netherlands in December 2012, and has been sold as a designer drug around Europe since mid-2013.

<span class="mw-page-title-main">4-Methylcathinone</span> Stimulant designer drug

4-Methylcathinone (4-MC), also known as normephedrone is a stimulant drug of the cathinone group. It is an active metabolite of the better known drug mephedrone.

<span class="mw-page-title-main">MDMAR</span> Chemical compound

3',4'-Methylenedioxy-4-methylaminorex (MDMAR) is a recreational designer drug from the substituted aminorex family, with monoamine-releasing effects. It is a potent serotonin–norepinephrine–dopamine releasing agent (SNDRA).

<span class="mw-page-title-main">Butylamphetamine</span> Amphetamine derivative and stimulant

Butylamphetamine is a psychostimulant of the substituted amphetamine family which was never marketed.

<span class="mw-page-title-main">2-Phenylmorpholine</span> Pharmaceutical compound

2-Phenylmorpholine is the parent compound of the substituted phenylmorpholine class of compounds. Examples of 2-phenylmorpholine derivatives include phenmetrazine (3-methyl-2-phenylmorpholine), phendimetrazine ( -3,4-dimethyl-2-phenylmorpholine), and pseudophenmetrazine ( -3-methyl-2-phenylmorpholine), which are monoamine releasing agents (MRAs) and psychostimulants. 2-Phenylmorpholine itself is a potent norepinephrine–dopamine releasing agent (NDRA) and hence may act as a stimulant similarly.

References

  1. 1 2 Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (May 2005). "Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs". The Journal of Pharmacology and Experimental Therapeutics. 313 (2): 848–854. doi:10.1124/jpet.104.080101. PMID   15677348. S2CID   12135483.
  2. Di Giovanni G, Esposito E, Di Matteo V (June 2010). "Role of serotonin in central dopamine dysfunction". CNS Neuroscience & Therapeutics. 16 (3): 179–194. doi:10.1111/j.1755-5949.2010.00135.x. PMC   6493878 . PMID   20557570.
  3. 1 2 Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, et al. (January 2001). "Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin". Synapse. 39 (1): 32–41. doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3. PMID   11071707. S2CID   15573624.
  4. 1 2 Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, et al. (March 2013). "Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products". Neuropsychopharmacology. 38 (4): 552–562. doi:10.1038/npp.2012.204. PMC   3572453 . PMID   23072836.
  5. 1 2 3 Blough B (July 2008). "Dopamine-releasing agents" (PDF). In Trudell ML, Izenwasser S (eds.). Dopamine Transporters: Chemistry, Biology and Pharmacology. Hoboken [NJ]: Wiley. pp. 305–320. ISBN   978-0-470-11790-3. OCLC   181862653. OL   18589888W.
  6. 1 2 Partilla JS, Dersch CM, Baumann MH, Carroll FI, Rothman RB (1999). "Profiling CNS Stimulants with a High-Throughput Assay for Biogenic Amine Transporter Substractes". Problems of Drug Dependence 1999: Proceedings of the 61st Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc (PDF). NIDA Res Monogr. Vol. 180. pp. 1–476 (252). PMID   11680410. RESULTS. Methamphetamine and amphetamine potently released NE (IC50s = 14.3 and 7.0 nM) and DA (IC50s = 40.4 nM and 24.8 nM), and were much less potent releasers of 5-HT (IC50s = 740 nM and 1765 nM). Phentermine released all three biogenic amines with an order of potency NE (IC50 = 28.8 nM)> DA (IC50 = 262 nM)> 5-HT (IC50 = 2575 nM). Aminorex released NE (IC50 = 26.4 nM), DA (IC50 = 44.8 nM) and 5-HT (IC50 = 193 nM). Chlorphentermine was a very potent 5-HT releaser (IC50 = 18.2 nM), a weaker DA releaser (IC50 = 935 nM) and inactive in the NE release assay. Chlorphentermine was a moderate potency inhibitor of [3H]NE uptake (Ki = 451 nM). Diethylpropion, which is self-administered, was a weak DA uptake inhibitor (Ki = 15 µM) and NE uptake inhibitor (Ki = 18.1 µM) and essentially inactive in the other assays. Phendimetrazine, which is self-administered, was a weak DA uptake inhibitor (IC50 = 19 µM), a weak NE uptake inhibitor (8.3 µM) and essentially inactive in the other assays.
  7. 1 2 Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, et al. (April 2012). "The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue". Neuropsychopharmacology. 37 (5): 1192–1203. doi:10.1038/npp.2011.304. PMC   3306880 . PMID   22169943.
  8. Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (May 2005). "Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs". The Journal of Pharmacology and Experimental Therapeutics. 313 (2): 848–854. doi:10.1124/jpet.104.080101. PMID   15677348. S2CID   12135483.
  9. Forsyth AN (22 May 2012). "Synthesis and Biological Evaluation of Rigid Analogues of Methamphetamines". ScholarWorks@UNO. Retrieved 4 November 2024.
  10. Solis E, Partilla JS, Sakloth F, Ruchala I, Schwienteck KL, De Felice LJ, et al. (September 2017). "N-Alkylated Analogs of 4-Methylamphetamine (4-MA) Differentially Affect Monoamine Transporters and Abuse Liability". Neuropsychopharmacology. 42 (10): 1950–1961. doi:10.1038/npp.2017.98. PMC   5561352 . PMID   28530234.
  11. Sakloth F (11 December 2015). Psychoactive synthetic cathinones (or 'bath salts'): Investigation of mechanisms of action. VCU Scholars Compass (Thesis). doi:10.25772/AY8R-PW77 . Retrieved 24 November 2024.
  12. Mayer FP, Wimmer L, Dillon-Carter O, Partilla JS, Burchardt NV, Mihovilovic MD, et al. (September 2016). "Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters". Br J Pharmacol. 173 (17): 2657–2668. doi:10.1111/bph.13547. PMC   4978154 . PMID   27391165.
  13. Hutsell BA, Baumann MH, Partilla JS, Banks ML, Vekariya R, Glennon RA, et al. (February 2016). "Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats". Eur Neuropsychopharmacol. 26 (2): 288–297. doi:10.1016/j.euroneuro.2015.12.010. PMC   5331761 . PMID   26738428.
  14. Glennon RA, Dukat M (2017). "Structure-Activity Relationships of Synthetic Cathinones". Curr Top Behav Neurosci. Current Topics in Behavioral Neurosciences. 32: 19–47. doi:10.1007/7854_2016_41. ISBN   978-3-319-52442-9. PMC   5818155 . PMID   27830576.
  15. Blough BE, Decker AM, Landavazo A, Namjoshi OA, Partilla JS, Baumann MH, et al. (March 2019). "The dopamine, serotonin and norepinephrine releasing activities of a series of methcathinone analogs in male rat brain synaptosomes". Psychopharmacology. 236 (3): 915–924. doi:10.1007/s00213-018-5063-9. PMC   6475490 . PMID   30341459.
  16. Walther D, Shalabi AR, Baumann MH, Glennon RA (January 2019). "Systematic Structure-Activity Studies on Selected 2-, 3-, and 4-Monosubstituted Synthetic Methcathinone Analogs as Monoamine Transporter Releasing Agents". ACS Chem Neurosci. 10 (1): 740–745. doi:10.1021/acschemneuro.8b00524. PMC   8269283 . PMID   30354055.
  17. Bonano JS, Banks ML, Kolanos R, Sakloth F, Barnier ML, Glennon RA, et al. (May 2015). "Quantitative structure-activity relationship analysis of the pharmacology of para-substituted methcathinone analogues". Br J Pharmacol. 172 (10): 2433–2444. doi:10.1111/bph.13030. PMC   4409897 . PMID   25438806.
  18. Rothman RB, Baumann MH (October 2003). "Monoamine transporters and psychostimulant drugs". European Journal of Pharmacology. 479 (1–3): 23–40. doi:10.1016/j.ejphar.2003.08.054. PMID   14612135.
  19. Rothman RB, Baumann MH (2006). "Therapeutic potential of monoamine transporter substrates". Current Topics in Medicinal Chemistry. 6 (17): 1845–1859. doi:10.2174/156802606778249766. PMID   17017961.
  20. Gelvin EP, McGAVACK TH (January 1952). "2-Amino-1-(p-methylphenyl)-propane (aptrol) as an anorexigenic agent in weight reduction". New York State Journal of Medicine. 52 (2): 223–226. PMID   14890975.
  21. Baumann MH, Clark RD, Woolverton WL, Wee S, Blough BE, Rothman RB (April 2011). "In vivo effects of amphetamine analogs reveal evidence for serotonergic inhibition of mesolimbic dopamine transmission in the rat". The Journal of Pharmacology and Experimental Therapeutics. 337 (1): 218–225. doi:10.1124/jpet.110.176271. PMC   3063744 . PMID   21228061.
  22. Blanckaert P, van Amsterdam J, Brunt T, van den Berg J, Van Durme F, Maudens K, et al. (September 2013). "4-Methyl-amphetamine: a health threat for recreational amphetamine users". Journal of Psychopharmacology. 27 (9): 817–822. doi:10.1177/0269881113487950. PMID   23784740. S2CID   35436194.
  23. "4-Methyl-amphetamine: A health threat for recreational amphetamine users". ResearchGate.
  24. Coppola M, Mondola R (December 2013). "4-methylamphetamine (4-MA): chemistry, pharmacology and toxicology of a new potential recreational drug". Mini Reviews in Medicinal Chemistry. 13 (14): 2097–2101. doi:10.2174/13895575113136660106. PMID   24195663.