Drinabant

Last updated
Drinabant
Drinabant.svg
Drinabant ball-and-stick model.png
Clinical data
ATC code
  • None
Legal status
Legal status
  • Development terminated
Identifiers
  • (±)-N-{1-[Bis(4-chlorophenyl)methyl]-3-azetidinyl}-N-(3,5-difluorophenyl)methanesulfonamide
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C23H20Cl2F2N2O2S
Molar mass 497.38 g·mol−1
3D model (JSmol)
  • Fc1cc(cc(F)c1)N(C4CN(C(c2ccc(Cl)cc2)c3ccc(Cl)cc3)C4)S(=O)(=O)C
  • InChI=1S/C23H20Cl2F2N2O2S/c1-32(30,31)29(21-11-19(26)10-20(27)12-21)22-13-28(14-22)23(15-2-6-17(24)7-3-15)16-4-8-18(25)9-5-16/h2-12,22-23H,13-14H2,1H3
  • Key:IQQBRKLVEALROM-UHFFFAOYSA-N

Drinabant (INN; AVE-1625) is a drug that acts as a selective CB1 receptor antagonist, which was under investigation varyingly by Sanofi-Aventis as a treatment for obesity, schizophrenia, Alzheimer's disease, Parkinson's disease, and nicotine dependence. [1] [2] [3] Though initially studied as a potential treatment for a variety of different medical conditions, Sanofi-Aventis eventually narrowed down the therapeutic indications of the compound to just appetite suppression. Drinabant reached phase IIb clinical trials for this purpose in the treatment of obesity but was shortly thereafter discontinued, [4] likely due to the observation of severe psychiatric side effects including anxiety, depression, and thoughts of suicide in patients treated with the now-withdrawn rimonabant, another CB1 antagonist that was also under development by Sanofi-Aventis. [5]

In late 2018, the drug was licensed by Opiant Pharmaceuticals, which intends to develop it for the treatment of acute cannabinoid overdose (ACO) as an injectable for administration in an emergency department setting. Opiant claims that ACO is most frequently linked to the ingestion of edibles containing large quantities THC and synthetic cannabinoids that are more potent and less expensive than marijuana. Edibles, sold as brownies, cookies and candies, pose particular risks for children, who often consume these by accident. There are currently no approved treatments for ACO.

See also

Related Research Articles

Cannabinoid Compounds found in cannabis

Cannabinoids are compounds found in cannabis. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis. Cannabidiol (CBD) is another major constituent of the plant. At least 113 distinct cannabinoids have been isolated from cannabis.

Cannabinoid receptor Group of receptors to cannabinoid compounds

Cannabinoid receptors, located throughout the body, are part of the endocannabinoid system, which is involved in a variety of physiological processes including appetite, pain-sensation, mood, and memory.

Rimonabant Chemical compound

Rimonabant (also known as SR141716; trade names Acomplia, Zimulti) is an anorectic antiobesity drug that was first approved in Europe in 2006 but was withdrawn worldwide in 2008 due to serious psychiatric side effects; it was never approved in the United States. Rimonabant is an inverse agonist for the cannabinoid receptor CB1 and was the first drug approved in that class.

Tetrahydrocannabivarin Homologue of tetrahydrocannabinol

Tetrahydrocannabivarin is a homologue of tetrahydrocannabinol (THC) having a propyl (3-carbon) side chain instead of a pentyl (5-carbon) group on the molecule, which makes it produce very different effects from THC.

Nabitan

Nabitan (Nabutam, Benzopyranoperidine, SP-106, Abbott 40656) is a synthetic cannabinoid analog of dronabinol (Marinol). It exhibits antiemetic and analgesic effects, most likely by binding to and activating the CB1 and CB2 cannabinoid receptors, and reduced intraocular pressure in animal tests, making it potentially useful in the treatment of glaucoma.

Nelivaptan

Nelivaptan (INN) is a selective, orally active, non-peptide vasopressin receptor antagonist selective for the V1B subtype. The drug had entered clinical trials for treatment of anxiety and depression. In July 2008, Sanofi-Aventis announced that further development of this drug had been halted.

Adenosine A<sub>2A</sub> receptor

The adenosine A2A receptor, also known as ADORA2A, is an adenosine receptor, and also denotes the human gene encoding it.

Cannabinoid receptor type 1 Mammalian protein found in Homo sapiens

Cannabinoid receptor type 1 (CB1), also known as cannabinoid receptor 1, is a G protein-coupled cannabinoid receptor that in humans is encoded by the CNR1 gene. The human CB1 receptor is expressed in the peripheral nervous system and central nervous system. It is activated by: endocannabinoids, a group of retrograde neurotransmitters that include anandamide and 2-arachidonoylglycerol (2-AG); plant phytocannabinoids, such as the compound THC which is an active ingredient of the psychoactive drug cannabis; and, synthetic analogs of THC. CB1 is antagonized by the phytocannabinoid tetrahydrocannabivarin (THCV).

Cannabinoid receptor type 2 Mammalian protein found in Homo sapiens

The cannabinoid receptor type 2, abbreviated as CB2, is a G protein-coupled receptor from the cannabinoid receptor family that in humans is encoded by the CNR2 gene. It is closely related to the cannabinoid receptor type 1 (CB1), which is largely responsible for the efficacy of endocannabinoid-mediated presynaptic-inhibition, the psychoactive properties of tetrahydrocannabinol (THC), the active agent in cannabis, and other phytocannabinoids (plant cannabinoids). The principal endogenous ligand for the CB2 receptor is 2-Arachidonoylglycerol (2-AG).

Taranabant

Taranabant (codenamed MK-0364) is a cannabinoid receptor type 1 (CB1) inverse agonist that was investigated as a potential treatment for obesity due to its anorectic effects. It was discovered by Merck & Co.

Surinabant

Surinabant (SR147778) is a cannabinoid receptor type 1 antagonist developed by Sanofi-Aventis. It is being investigated as a potential treatment for nicotine addiction, to assist smoking cessation. It may also be developed as an anorectic drug to assist with weight loss, however there are already several CB1 antagonists or inverse agonists on the market or under development for this application, so surinabant is at present mainly being developed as an anti-smoking drug, with possible application in the treatment of other addictive disorders such as alcoholism. Other potential applications such as treatment of ADHD have also been proposed.

A cannabinoid receptor antagonist, also known simply as a cannabinoid antagonist or as an anticannabinoid, is a type of cannabinoidergic drug that binds to cannabinoid receptors (CBR) and prevents their activation by endocannabinoids. They include antagonists, inverse agonists, and antibodies of CBRs. The discovery of the endocannabinoid system led to the development of CB1 receptor antagonists. The first CBR inverse agonist, rimonabant, was described in 1994. Rimonabant blocks the CB1 receptor selectively and has been shown to decrease food intake and regulate body-weight gain. The prevalence of obesity worldwide is increasing dramatically and has a great impact on public health. The lack of efficient and well-tolerated drugs to cure obesity has led to an increased interest in research and development of CBR antagonists. Cannabidiol (CBD), a naturally occurring cannabinoid, is a non-competitive CB1/CB2 receptor antagonist. And Δ9-tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid, modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. CBD is a very low-affinity CB1 ligand, that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant.

Ibipinabant

Ibipinabant (SLV319, BMS-646,256) is a drug used in scientific research which acts as a potent and highly selective CB1 antagonist. It has potent anorectic effects in animals, and was researched for the treatment of obesity, although CB1 antagonists as a class have now fallen out of favour as potential anorectics following the problems seen with rimonabant, and so ibipinabant is now only used for laboratory research, especially structure-activity relationship studies into novel CB1 antagonists. SLV330, which is a structural analogue of Ibipinabant, was reported active in animal models related to the regulation of memory, cognition, as well as in addictive behavior. An atom-efficient synthesis of ibipinabant has been reported.

Otenabant Chemical compound

Otenabant (CP-945,598) is a drug which acts as a potent and highly selective CB1 antagonist. It was developed by Pfizer for the treatment of obesity, but development for this application has been discontinued following the problems seen during clinical use of the similar drug rimonabant.

GW-405,833 Chemical compound

GW-405,833 (L-768,242) is a drug that acts as a potent and selective partial agonist for the cannabinoid receptor subtype CB2, with an EC50 of 0.65 nM and selectivity of around 1200x for CB2 over CB1 receptors. Animal studies have shown it to possess antiinflammatory and anti-hyperalgesic effects at low doses, followed by ataxia and analgesic effects when the dose is increased. Selective CB2 agonist drugs such as GW-405,833 are hoped to be particularly useful in the treatment of allodynia and neuropathic pain for which current treatment options are often inadequate.

An orexigenic, or appetite stimulant, is a drug, hormone, or compound that increases appetite and may induce hyperphagia. This can be a medication or a naturally occurring neuropeptide hormone, such as ghrelin, orexin or neuropeptide Y, which increases hunger and therefore enhances food consumption. Usually appetite enhancement is considered an undesirable side effect of certain drugs as it leads to unwanted weight gain, but sometimes it can be beneficial and a drug may be prescribed solely for this purpose, especially when the patient is suffering from severe appetite loss or muscle wasting due to cystic fibrosis, anorexia, old age, cancer or AIDS. There are several widely used drugs which can cause a boost in appetite, including tricyclic antidepressants (TCAs), tetracyclic antidepressants, natural or synthetic cannabinoids, first-generation antihistamines, most antipsychotics and many steroid hormones. In the United States, no hormone or drug has currently been approved by the FDA specifically as an orexigenic, with the exception of Dronabinol, which received approval for HIV/AIDS-induced anorexia only.

TM-38837

TM-38837 is a small molecule inverse agonist/antagonist of the CB1 cannabinoid receptor, with peripheral selectivity. It is being developed for the treatment of obesity and metabolic disorders by 7TM Pharma. The company has announced phase I clinical trials.

PF-514273

PF-514273 is a drug developed by Pfizer, which acts as an extremely selective antagonist for the CB1 receptor, with approximately 10,000x selectivity over the closely related CB2 receptor. This very high selectivity makes it useful for scientific research into these receptors, as many commonly used cannabinoid receptor antagonists also block the CB2 receptor to some extent.

Rosonabant

Rosonabant (INN; E-6776) is a drug acting as a CB1 receptor antagonist/inverse agonist that was under investigation by Esteve as an appetite suppressant for the treatment of obesity. Development of the drug for clinical use was apparently halted shortly after the related CB1 antagonist rimonabant was discontinued in November 2008, due to the reports of severe psychiatric adverse effects such as anxiety, depression, and suicidal ideation associated with it and with similarly acting agents.

An endocannabinoid enhancer (eCBE) is a type of cannabinoidergic drug that enhances the activity of the endocannabinoid system by increasing extracellular concentrations of endocannabinoids. Examples of different types of eCBEs include fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, and endocannabinoid transporter (eCBT) inhibitors. An example of an actual eCBE is AM404, the active metabolite of the analgesic paracetamol and a dual FAAH inhibitor and eCBRI.

References

  1. Lange JH, Kruse CG (2008). "Cannabinoid CB1 receptor antagonists in therapeutic and structural perspectives". The Chemical Record. 8 (3): 156–68. doi:10.1002/tcr.20147. PMID   18563799.
  2. Kwon MO, Herrling P (2005). "List of drugs in development for neurodegenerative diseases. Update September 2005". Neuro-Degenerative Diseases. 2 (2): 61–108. doi:10.1159/000089285. PMID   16909049. S2CID   2553974.
  3. Gerald Litwack (14 August 2009). Anandamide. Academic Press. p. 172. ISBN   978-0-12-374782-2 . Retrieved 13 May 2012.
  4. Reggio, Patricia H. (2009). "Toward the design of cannabinoid CB1 receptor inverse agonists and neutral antagonists". Drug Development Research. 70 (8): 585–600. doi:10.1002/ddr.20337. ISSN   0272-4391. S2CID   83478850.
  5. Lee HK, Choi EB, Pak CS (2009). "The current status and future perspectives of studies of cannabinoid receptor 1 antagonists as anti-obesity agents". Current Topics in Medicinal Chemistry. 9 (6): 482–503. doi:10.2174/156802609788897844. PMID   19689362. Archived from the original on 2013-05-22. Retrieved 2019-07-29.