O-1602

Last updated
O-1602
O-1602 structure.png
Identifiers
  • 5-methyl-4-[(1R,6R)-3-methyl-6-prop-1-en-2-ylcyclohex-2-en-1-yl]benzene-1,3-diol
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C17H22O2
Molar mass 258.361 g·mol−1
3D model (JSmol)
  • CC1=C[C@@H](C2=C(C)C=C(O)C=C2O)[C@H](C(C)=C)CC1
  • InChI=1S/C17H22O2/c1-10(2)14-6-5-11(3)7-15(14)17-12(4)8-13(18)9-16(17)19/h7-9,14-15,18-19H,1,5-6H2,2-4H3/t14-,15+/m0/s1
  • Key:KDZOUSULXZNDJH-LSDHHAIUSA-N

O-1602 is a synthetic compound most closely related to abnormal cannabidiol, and more distantly related in structure to cannabinoid drugs such as THC. O-1602 does not bind to the classical cannabinoid receptors CB1 or CB2 with any significant affinity, but instead is an agonist at several other receptors which appear to be related to the cannabinoid receptors, particularly GPR18 and GPR55. These previously orphan receptors have been found to be targets for a number of endogenous and synthetic cannabinoid compounds, and are thought to be responsible for most of the non-CB1, non-CB2 mediated effects that have become evident in the course of cannabinoid research. O-1602 produces some effects shared with classical cannabinoid compounds such as analgesic and antiinflammatory effects and appetite stimulation, but it does not produce sedation or psychoactive effects, and has several actions in the gut and brain that are not shared with typical cannabinoid agonists. [1] [2] [3] [4] [5] [6] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Cannabinoid</span> Compounds found in cannabis

Cannabinoids are several structural classes of compounds found in the cannabis plant primarily and most animal organisms or as synthetic compounds. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC) (delta-9-THC), the primary psychoactive compound in cannabis. Cannabidiol (CBD) is also a major constituent of temperate cannabis plants and a minor constituent in tropical varieties. At least 100 distinct phytocannabinoids have been isolated from cannabis, although only four have been demonstrated to have a biogenetic origin. It was reported in 2020 that phytocannabinoids can be found in other plants such as rhododendron, licorice and liverwort, and earlier in Echinacea.

<span class="mw-page-title-main">Cannabinoid receptor</span> Group of receptors to cannabinoid compounds

Cannabinoid receptors, located throughout the body, are part of the endocannabinoid system of vertebrates– a class of cell membrane receptors in the G protein-coupled receptor superfamily. As is typical of G protein-coupled receptors, the cannabinoid receptors contain seven transmembrane spanning domains. Cannabinoid receptors are activated by three major groups of ligands:

<span class="mw-page-title-main">CP 55,940</span> Chemical compound

CP 55,940 is a synthetic cannabinoid which mimics the effects of naturally occurring THC. CP 55,940 was created by Pfizer in 1974 but was never marketed. It is currently used as a research tool to study the endocannabinoid system.

<span class="mw-page-title-main">Cannabinol</span> Naturally-occurring cannabinoid

Cannabinol (CBN) is a mildly psychoactive phytocannabinoid that acts as a low affinity partial agonist at both CB1 and CB2 receptors. This activity at CB1 and CB2 receptors constitutes interaction of CBN with the endocannabinoid system (ECS).

<span class="mw-page-title-main">Tetrahydrocannabivarin</span> Homologue of tetrahydrocannabinol

Tetrahydrocannabivarin is a homologue of tetrahydrocannabinol (THC) having a propyl (3-carbon) side chain instead of pentyl (5-carbon), making it non-psychoactive in lower doses. It has been shown to exhibit neuroprotective activity, appetite suppression, glycemic control and reduced side effects compared to THC, making it a potential treatment for management of obesity and diabetes. THCV was studied by Roger Adams as early as 1942.

<span class="mw-page-title-main">WIN 55,212-2</span> Chemical compound

WIN 55,212-2 is a chemical described as an aminoalkylindole derivative, which produces effects similar to those of cannabinoids such as tetrahydrocannabinol (THC) but has an entirely different chemical structure.

<span class="mw-page-title-main">Cannabigerol</span> Minor cannabinoid

Cannabigerol (CBG) is a non-psychoactive cannabinoid and minor constituent of cannabis. It is one of more than 120 identified cannabinoids found in the plant genus Cannabis. The compound is the decarboxylated form of cannabigerolic acid (CBGA), the parent molecule from which other cannabinoids are biosynthesized.

<span class="mw-page-title-main">NAGly receptor</span> Protein-coding gene in the species Homo sapiens

N-Arachidonyl glycine receptor, also known as G protein-coupled receptor 18 (GPR18), is a protein that in humans is encoded by the GPR18 gene. Along with the other previously orphan receptors GPR55 and GPR119, GPR18 has been found to be a receptor for endogenous lipid neurotransmitters, several of which also bind to cannabinoid receptors. It has been found to be involved in the regulation of intraocular pressure.

<span class="mw-page-title-main">GPR55</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor 55 also known as GPR55 is a G protein-coupled receptor that in humans is encoded by the GPR55 gene.

<span class="mw-page-title-main">Cannabinoid receptor 1</span> Mammalian protein found in humans

Cannabinoid receptor 1 (CB1), is a G protein-coupled cannabinoid receptor that in humans is encoded by the CNR1 gene. And discovered, by determination and characterization in 1988, and cloned in 1990 for the first time. The human CB1 receptor is expressed in the peripheral nervous system and central nervous system. It is activated by endogenous cannabinoids called endocannabinoids, a group of retrograde neurotransmitters that include lipids, such as anandamide and 2-arachidonoylglycerol; plant phytocannabinoids, such as docosatetraenoylethanolamide found in wild daga, the compound tetrahydrocannabinol which is an active constituent of the psychoactive drug cannabis; and synthetic analogs of tetrahydrocannabinol. CB1 is antagonized by the phytocannabinoid tetrahydrocannabivarin at low doses and at higher doses, it activate the CB1 receptor as an agonist, but with less potency than tetrahydrocannabinol.

<span class="mw-page-title-main">Cannabinoid receptor 2</span> Mammalian protein found in Homo sapiens

The cannabinoid receptor 2(CB2), is a G protein-coupled receptor from the cannabinoid receptor family that in humans is encoded by the CNR2 gene. It is closely related to the cannabinoid receptor 1 (CB1), which is largely responsible for the efficacy of endocannabinoid-mediated presynaptic-inhibition, the psychoactive properties of tetrahydrocannabinol (THC), the active agent in cannabis, and other phytocannabinoids. The principal endogenous ligand for the CB2 receptor is 2-Arachidonoylglycerol (2-AG).

A cannabinoid receptor antagonist, also known simply as a cannabinoid antagonist or as an anticannabinoid, is a type of cannabinoidergic drug that binds to cannabinoid receptors (CBR) and prevents their activation by endocannabinoids. They include antagonists, inverse agonists, and antibodies of CBRs. The discovery of the endocannabinoid system led to the development of CB1 receptor antagonists. The first CBR inverse agonist, rimonabant, was described in 1994. Rimonabant blocks the CB1 receptor selectively and has been shown to decrease food intake and regulate body-weight gain. The prevalence of obesity worldwide is increasing dramatically and has a great impact on public health. The lack of efficient and well-tolerated drugs to cure obesity has led to an increased interest in research and development of CBR antagonists. Cannabidiol (CBD), a naturally occurring cannabinoid and a non-competitive CB1/CB2 receptor antagonist, as well as Δ9-tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid, modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. CBD is a very low-affinity CB1 ligand, that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant.

<span class="mw-page-title-main">AM-1241</span> Chemical compound

AM-1241 (1-(methylpiperidin-2-ylmethyl)-3-(2-iodo-5-nitrobenzoyl)indole) is a chemical from the aminoalkylindole family that acts as a potent and selective agonist for the cannabinoid receptor CB2, with a Ki of 3.4 nM at CB2 and 80 times selectivity over the related CB1 receptor. It has analgesic effects in animal studies, particularly against "atypical" pain such as hyperalgesia and allodynia. This is thought to be mediated through CB2-mediated peripheral release of endogenous opioid peptides, as well as direct activation of the TRPA1 channel. It has also shown efficacy in the treatment of amyotrophic lateral sclerosis in animal models.

<span class="mw-page-title-main">Abnormal cannabidiol</span> Synthetic, cannabinoid-like compound

Abnormal cannabidiol (Abn-CBD) is a synthetic regioisomer of cannabidiol, which unlike most other cannabinoids produces vasodilator effects, lowers blood pressure, and induces cell migration, cell proliferation and mitogen-activated protein kinase activation in microglia, but without producing any psychoactive or sedative effects. Abn-CBD can be found as an impurity in synthetic cannabidiol.

<span class="mw-page-title-main">O-1918</span> Chemical compound

O-1918 is a synthetic compound related to cannabidiol, which is an antagonist at two former orphan receptors GPR18 and GPR55, that appear to be related to the cannabinoid receptors. O-1918 is used in the study of these receptors, which have been found to be targets for a number of endogenous and synthetic cannabinoid compounds, and are thought to be responsible for most of the non-CB1, non-CB2 mediated effects that have become evident in the course of cannabinoid research.

PSB-SB-487 is an experimental drug which is used as a pharmacological research tool. It is a coumarin derivative which is an antagonist at the former orphan receptor GPR55. Unlike older GPR55 antagonists such as O-1918, PSB-SB-487 has good selectivity over the related receptor GPR18, with an IC50 of 113nM at GPR55 vs 12500nM at GPR18. However it has poorer selectivity over other related receptors, acting as a weak antagonist at CB1 with a Ki of 1170nM, and a partial agonist at CB2 with a Ki of 292nM.

<span class="mw-page-title-main">CID16020046</span> Chemical compound

CID16020046 is a compound which acts as an inverse agonist at the former orphan receptor GPR55, and may be the first selective inverse agonist characterised for this receptor. It was found to block a number of GPR55 mediated responses such as wound healing and activation of immune system T-cells and B-cells, as well as showing inverse agonist activity in the absence of GPR55 agonist stimulation. However while it was found to have good selectivity over the related CB1 and CB2 cannabinoid receptors as well as a number of other targets, CID16020046 has not yet been tested against another related receptor GPR18, so its selectivity for GPR55 over this target has not been established. It has antiinflammatory actions, has been used to study the interaction between GPR55 mediated and CB1 mediated activity, and research using this compound has revealed a role for GPR55 in learning and memory.

<span class="mw-page-title-main">PSB-CB5</span> Chemical compound

PSB-CB5 (CID-85469571) is a compound which acts as an antagonist at the former orphan receptor GPR18, and is the first selective antagonist characterised for this receptor, with an IC50 of 279nM, and good selectivity over related receptors (over 36x selectivity vs CB1 and GPR55, and 14x vs CB2.) As all previously known antagonists for GPR18 also antagonise GPR55, it has been difficult to separate the effects of these two receptor targets, so the discovery of a selective GPR18 antagonist is expected to be useful in research into the actions of this receptor.

<span class="mw-page-title-main">CBD-DMH</span> Chemical compound with cannabinoid effects

Cannabidiol-dimethylheptyl (CBD-DMH or DMH-CBD) is a synthetic homologue of cannabidiol where the pentyl chain has been replaced by a dimethylheptyl chain. Several isomers of this compound are known. The most commonly used isomer in research is (−)-CBD-DMH, which has the same stereochemistry as natural cannabidiol, and a 1,1-dimethylheptyl side chain. This compound is not psychoactive and acts primarily as an anandamide reuptake inhibitor, but is more potent than cannabidiol as an anticonvulsant and has around the same potency as an antiinflammatory. Unexpectedly the “unnatural” enantiomer (+)-CBD-DMH, which has reversed stereochemistry from cannabidiol, was found to be a directly acting cannabinoid receptor agonist with a Ki of 17.4nM at CB1 and 211nM at CB2, and produces typical cannabinoid effects in animal studies, as does its 7-OH derivative.

<span class="mw-page-title-main">Cannabinor</span> Chemical compound

Cannabinor (PRS-211,375) is a drug which acts as a potent and selective cannabinoid CB2 receptor agonist. It is classed as a "nonclassical" cannabinoid with a chemical structure similar to that of cannabidiol. It has a CB2 affinity of 17.4 nM vs 5,585 nM at CB1, giving it over 300× selectivity for CB2. It showed analgesic effects in animal studies especially in models of neuropathic pain, but failed in Phase IIb human clinical trials due to lack of efficacy.

References

  1. Ashton JC (September 2012). "The atypical cannabinoid O-1602: targets, actions, and the central nervous system". Central Nervous System Agents in Medicinal Chemistry. 12 (3): 233–9. doi:10.2174/187152412802430156. PMID   22831390.
  2. Schuelert N, McDougall JJ (August 2011). "The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55". Neuroscience Letters. 500 (1): 72–6. doi:10.1016/j.neulet.2011.06.004. PMID   21683763. S2CID   3410391.
  3. Schicho R, Bashashati M, Bawa M, et al. (August 2011). "The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment". Inflammatory Bowel Diseases. 17 (8): 1651–64. doi:10.1002/ibd.21538. PMC   3116968 . PMID   21744421.
  4. Díaz-Arteaga A, Vázquez MJ, Vazquez-Martínez R, et al. (March 2012). "The atypical cannabinoid O-1602 stimulates food intake and adiposity in rats". Diabetes, Obesity & Metabolism. 14 (3): 234–43. doi:10.1111/j.1463-1326.2011.01515.x. PMID   21981246. S2CID   26435270.
  5. Kargl J, Haybaeck J, Stančić A, et al. (April 2013). "O-1602, an atypical cannabinoid, inhibits tumor growth in colitis-associated colon cancer through multiple mechanisms". Journal of Molecular Medicine. 91 (4): 449–58. doi:10.1007/s00109-012-0957-1. PMC   3529923 . PMID   22965195.
  6. McHugh D, Wager-Miller J, Page J, Bradshaw HB (July 2012). "siRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N-arachidonoyl glycine-induced cell migration". Journal of Molecular Signaling. 7 (1): 10. doi: 10.1186/1750-2187-7-10 . PMC   3493281 . PMID   22834922.
  7. Caldwell MD, Hu SS, Viswanathan S, et al. (June 2013). "A GPR18-based signalling system regulates IOP in murine eye". British Journal of Pharmacology. 169 (4): 834–43. doi:10.1111/bph.12136. PMC   3687663 . PMID   23461720.