5F-APINACA

Last updated

5F-APINACA
5F-APINACA.svg
Clinical data
Other names5F-AKB-48, 5F-AKB48
Legal status
Legal status
Identifiers
  • N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
CompTox Dashboard (EPA)
Chemical and physical data
Formula C23H30FN3O
Molar mass 383.511 g·mol−1
3D model (JSmol)
  • O=C(NC1(C[C@@H]2C3)C[C@H](C2)C[C@H]3C1)C4=NN(CCCCCF)C5=CC=CC=C54
  • InChI=1S/C23H30FN3O/c24-8-4-1-5-9-27-20-7-3-2-6-19(20)21(26-27)22(28)25-23-13-16-10-17(14-23)12-18(11-16)15-23/h2-3,6-7,16-18H,1,4-5,8-15H2,(H,25,28)/t16-,17+,18-,23?
  • Key:UCMFSGVIEPXYIV-XHICYHHKSA-N

5F-APINACA (also known as A-5F-PINACA, [3] 5F-AKB-48 or 5F-AKB48) is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. [4] [5] Structurally it closely resembles cannabinoid compounds from patent WO 2003/035005 but with a 5-fluoropentyl chain on the indazole 1-position, and 5F-APINACA falls within the claims of this patent, as despite not being disclosed as an example, it is very similar to the corresponding pentanenitrile and 4-chlorobutyl compounds which are claimed as examples 3 and 4. [6]

Contents

5F-APINACA was first identified in South Korea. [7] It is expected to be a potent agonist of the CB1 receptor and CB2 receptor. [8] Its metabolism has been described in literature. [9] [10] [11] [12]

Pharmacology

5F-APINACA acts as a full agonist with a binding affinity of 1.94 nM at CB1 and 0.266 nM at CB2 cannabinoid receptors. [13]

Legality

In the United States, 5F-APINACA is a Schedule I controlled substance. [14]

5F-APINACA is an Anlage II controlled drug in Germany since July 2013.

As of October 2015, 5F-APINACA is a controlled substance in China. [15]

5F-APINACA is banned in the Czech Republic. [16]

See also

Related Research Articles

<span class="mw-page-title-main">APINACA</span> Chemical compound

APINACA (AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide) is a drug that acts as a reasonably potent agonist for the cannabinoid receptors. It is a full agonist at CB1 with an EC50 of 142 nM and Ki of 3.24 nM (compared to the Ki of Δ9-THC at 28.35 nM and JWH-018 at 9.62 nM), while at CB2 it acts as a partial agonist with an EC50 of 141 nM and Ki of 1.68 nM (compared to the Ki of Δ9-THC at 37.82 nM and JWH-018 at 8.55 nM). Its pharmacological characterization has also been reported in a discontinued patent application. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in Japan in March 2012 as an ingredient in synthetic cannabis smoking blends, along with a related compound APICA. Structurally, it closely resembles cannabinoid compounds from a University of Connecticut patent, but with a simple pentyl chain on the indazole 1-position, and APINACA falls within the claims of this patent despite not being disclosed as an example.

<span class="mw-page-title-main">APICA (synthetic cannabinoid drug)</span> Chemical compound

APICA is an indole based drug that acts as a potent agonist for the cannabinoid receptors.

<span class="mw-page-title-main">AB-FUBINACA</span> Chemical compound

AB-FUBINACA (AMB-FUBINACA) is a psychoactive drug that acts as a potent agonist for the cannabinoid receptors, with Ki values of 0.9 nM at CB1 and 23.2 nM at CB2 and EC50 values of 1.8 nM at CB1 and 3.2 nM at CB2. It was originally developed by Pfizer in 2009 as an analgesic medication but was never pursued for human use. In 2012, it was discovered as an ingredient in synthetic cannabinoid blends in Japan, along with a related compound AB-PINACA, which had not previously been reported.

<span class="mw-page-title-main">AB-PINACA</span> Chemical compound

AB-PINACA is a compound that was first identified as a component of synthetic cannabis products in Japan in 2012.

<span class="mw-page-title-main">ADBICA</span> Group of stereoisomers

ADBICA (also known as ADB-PICA) is a designer drug identified in synthetic cannabis blends in Japan in 2013. ADBICA had not previously been reported in the scientific literature prior to its sale as a component of synthetic cannabis blends. ADBICA features a carboxamide group at the 3-indole position, like SDB-001 and STS-135. The stereochemistry of the tert-butyl side-chain in the product is unresolved, though in a large series of indazole derivatives structurally similar to ADBICA that are disclosed in Pfizer patent WO 2009/106980, activity resides exclusively in the (S) enantiomers. ADBICA is a potent agonist of the CB1 receptor and CB2 receptor with an EC50 value of 0.69 nM and 1.8 nM respectively.

<span class="mw-page-title-main">ADB-FUBINACA</span> Chemical compound

ADB-FUBINACA (ADMB-FUBINACA) is a designer drug identified in synthetic cannabis blends in Japan in 2013. In 2018, it was the third-most common synthetic cannabinoid identified in drugs seized by the Drug Enforcement Administration.

<span class="mw-page-title-main">AB-CHMINACA</span> Chemical compound

AB-CHMINACA is an indazole-based synthetic cannabinoid. It is a potent agonist of the CB1 receptor (Ki = 0.78 nM) and CB2 receptor (Ki = 0.45 nM) and fully substitutes for Δ9-THC in rat discrimination studies, while being 16x more potent. Continuing the trend seen in other cannabinoids of this generation, such as AB-FUBINACA and AB-PINACA, it contains a valine amino acid amide residue as part of its structure, where older cannabinoids contained a naphthyl or adamantane residue.

<span class="mw-page-title-main">5F-ADB</span> Chemical compound

5F-ADB (also known as MDMB-5F-PINACA and 5F-MDMB-PINACA) is an indazole-based synthetic cannabinoid from the indazole-3-carboxamide family, which has been used as an active ingredient in synthetic cannabis products and has been sold online as a designer drug. 5F-ADB is a potent agonist of the CB1 receptor, though it is unclear whether it is selective for this target. 5F-ADB was first identified in November 2014 from post-mortem samples taken from an individual who had died after using a product containing this substance. Subsequent testing identified 5F-ADB to have been present in a total of ten people who had died from unexplained drug overdoses in Japan between September 2014 and December 2014. 5F-ADB is believed to be extremely potent based on the very low levels detected in tissue samples, and appears to be significantly more toxic than earlier synthetic cannabinoid drugs that had previously been sold.

<span class="mw-page-title-main">ADB-CHMINACA</span> Chemical compound

ADB-CHMINACA (also known as ADMB-CHMINACA and MAB-CHMINACA) is an indazole-based synthetic cannabinoid. It is a potent agonist of the CB1 receptor with a binding affinity of Ki = 0.289 nM and was originally developed by Pfizer in 2009 as an analgesic medication. It was identified in cannabinoid blends in Japan in early 2015.

<span class="mw-page-title-main">5F-AMB</span> Chemical compound

5F-AMB (also known as 5F-MMB-PINACA and 5F-AMB-PINACA) is an indazole-based synthetic cannabinoid from the indazole-3-carboxamide family, which has been used as an active ingredient in synthetic cannabis products. It was first identified in Japan in early 2014. Although only very little pharmacological information about 5F-AMB itself exists, its 4-cyanobutyl analogue (instead of 5-fluoropentyl) has been reported to be a potent agonist for the CB1 receptor (KI = 0.7 nM).

<span class="mw-page-title-main">MDMB-CHMICA</span> Chemical compound

'MDMB-CHMICAa' is an indole-based synthetic cannabinoid that is a potent agonist of the CB1 receptor and has been sold online as a designer drug. While MDMB-CHMICA was initially sold under the name "MMB-CHMINACA", the compound corresponding to this code name (i.e. the isopropyl instead of t-butyl analogue of MDMB-CHMINACA) has been identified on the designer drug market in 2015 as AMB-CHMINACA.

<span class="mw-page-title-main">5F-AB-PINACA</span> Chemical compound

5F-AB-PINACA is an indazole-based synthetic cannabinoid that is derived from a series of compounds originally developed by Pfizer in 2009 as an analgesic medication, and has been sold online as a designer drug.

<span class="mw-page-title-main">MDMB-FUBINACA</span> Chemical compound

MDMB-FUBINACA (also known as MDMB(N)-Bz-F and FUB-MDMB) is an indazole-based synthetic cannabinoid that is a potent agonist for the cannabinoid receptors, with Ki values of 1.14 nM at CB1 and 0.1228 nM at CB2 and EC50 values of 0.2668 nM at CB1 and 0.1411 nM at CB2, and has been sold online as a designer drug. Its benzyl analogue (instead of 4-fluorobenzyl) has been reported to be a potent agonist for the CB1 receptor (Ki = 0.14 nM, EC50 = 2.42 nM). The structure of MDMB-FUBINACA contains the amino acid, 3-methylvaline or tert-leucine methyl ester.

<span class="mw-page-title-main">PX-1</span> Chemical compound

PX-1 is an indole-based synthetic cannabinoid that has been sold online as a designer drug.

<span class="mw-page-title-main">PX-2</span> Chemical compound

PX-2 is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. It contains a phenylalanine amino acid amide as part of its structure.

<span class="mw-page-title-main">5F-ADB-PINACA</span> Chemical compound

5F-ADB-PINACA is a cannabinoid designer drug that is an ingredient in some synthetic cannabis products. It is a potent agonist of the CB1 receptor and CB2 receptor with EC50 values of 0.24 nM and 2.1 nM respectively.

<span class="mw-page-title-main">FUB-APINACA</span> Chemical compound

FUB-APINACA (also known as A-FUBINACA according to the EMCCDA framework for naming synthetic cannabinoids and FUB-AKB48) is an indazole-based synthetic cannabinoid that is presumed to be a potent agonist of the CB1 receptor and has been sold online as a designer drug. It is an analog of APINACA and 5F-APINACA where the pentyl chain has been replaced with fluorobenzyl.

<span class="mw-page-title-main">5F-MDMB-PICA</span> Chemical compound

5F-MDMB-PICA (MDMB-5F-PICA) is a designer drug and synthetic cannabinoid. In 2018, it was the fifth-most common synthetic cannabinoid identified in drugs seized by the Drug Enforcement Administration.

<span class="mw-page-title-main">ADB-BINACA</span> Chemical compound

ADB-BINACA (also known as ADMB-BZINACA using EMCDDA naming standards) is a cannabinoid designer drug that has been found as an ingredient in some synthetic cannabis products. It was originally developed by Pfizer as a potential analgesic, and is a potent agonist of the CB1 receptor with a binding affinity (Ki) of 0.33 nM and an EC50 of 14.7 nM.

References

  1. Anvisa (2023-07-24). "RDC Nº 804 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 804 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-07-25). Archived from the original on 2023-08-27. Retrieved 2023-08-27.
  2. "Substance Details 5F-APINACA" . Retrieved 2024-01-22.
  3. Pulver B, Fischmann S, Gallegos A, Christie R (March 2023). "EMCDDA framework and practical guidance for naming synthetic cannabinoids". Drug Testing and Analysis. 15 (3): 255–276. doi:10.1002/dta.3403. PMID   36346325.
  4. "AKB48 N-(5-fluoropentyl) analog". Cayman Chemical. Retrieved 6 July 2015.
  5. "5F-AKB48" (PDF). Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG). 18 February 2013. Retrieved 6 July 2015.
  6. WO 2003/035005
  7. Chung H, Choi H, Heo S, Kim E, Lee J (January 2014). "Synthetic cannabinoids abused in South Korea: drug identifications by the National Forensic Service from 2009 to June 2013". Forensic Toxicology. 32 (1): 82–88. doi:10.1007/s11419-013-0213-6. S2CID   23058813.
  8. "AKB48 (APINACA) and 5F-AKB48 (5F-APINACA)" (PDF). Drug Enforcement Administration. May 2013. Retrieved 6 July 2015.
  9. Jang M, Shin I, Kim J, Yang W (February 2015). "Simultaneous quantification of 37 synthetic cannabinoid metabolites in human urine by liquid chromatography-tandem mass spectrometry". Forensic Toxicology. 33 (2): 221–234. doi:10.1007/s11419-015-0265-x. S2CID   3038555.
  10. Karinen R, Tuv SS, Øiestad EL, Vindenes V (January 2015). "Concentrations of APINACA, 5F-APINACA, UR-144 and its degradant product in blood samples from six impaired drivers compared to previous reported concentrations of other synthetic cannabinoids". Forensic Science International. 246: 98–103. doi:10.1016/j.forsciint.2014.11.012. PMID   25485949.
  11. Holm NB, Pedersen AJ, Dalsgaard PW, Linnet K (March 2015). "Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry". Drug Testing and Analysis. 7 (3): 199–206. doi:10.1002/dta.1663. PMID   24802286.
  12. Wohlfarth A, Castaneto MS, Zhu M, Pang S, Scheidweiler KB, Kronstrand R, et al. (May 2015). "Pentylindole/Pentylindazole Synthetic Cannabinoids and Their 5-Fluoro Analogs Produce Different Primary Metabolites: Metabolite Profiling for AB-PINACA and 5F-AB-PINACA". The AAPS Journal. 17 (3): 660–677. doi:10.1208/s12248-015-9721-0. PMC   4406957 . PMID   25721194.
  13. Hess C, Schoeder CT, Pillaiyar T, Madea B, Müller CE (1 July 2016). "Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice". Forensic Toxicology. 34 (2): 329–343. doi:10.1007/s11419-016-0320-2. PMC   4929166 . PMID   27429655.
  14. "Schedules of Controlled Substances: Temporary Placement of Six Synthetic Cannabinoids (5F-ADB, 5F-AMB, 5F-APINACA, ADB-FUBINACA, MDMB-CHMICA and MDMB-FUBINACA) Into Schedule I". Drug Enforcement Administration. Archived from the original on 2019-10-17. Retrieved 2017-03-17.
  15. "关于印发《非药用类麻醉药品和精神药品列管办法》的通知" [Notice on the issuance of the "Regulations on the Listing of Non-Medicinal Narcotic Drugs and Psychotropic Drugs"] (in Chinese). China Food and Drug Administration. 27 September 2015. Archived from the original on 1 October 2015. Retrieved 1 October 2015.
  16. "Látky, o které byl doplněn seznam č. 4 psychotropních látek (příloha č. 4 k nařízení vlády č. 463/2013 Sb.)" (PDF) (in Czech). Ministerstvo zdravotnictví. Archived from the original (PDF) on 2016-03-09. Retrieved 2016-02-06.