Cannabidiphorol

Last updated

Cannabidiphorol
Cannabidiphorol structure.png
CBDP 3D BS.png
Identifiers
  • 5-heptyl-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-1,3-benzenediol
CAS Number
PubChem CID
ChemSpider
CompTox Dashboard (EPA)
Chemical and physical data
Formula C23H34O2
Molar mass 342.523 g·mol−1
3D model (JSmol)
  • CC(=C)[C@@H]1CCC(C)=C[C@H]1c1c(O)cc(CCCCCCC)cc1O
  • InChI=1S/C23H34O2/c1-5-6-7-8-9-10-18-14-21(24)23(22(25)15-18)20-13-17(4)11-12-19(20)16(2)3/h13-15,19-20,24-25H,2,5-12H2,1,3-4H3/t19-,20+/m0/s1
  • Key:GGHRHCGOMWNLCE-VQTJNVASSA-N

Cannabidiphorol, the heptyl-homologue of cannabidiol was identified as a natural phytocannabinoid and named cannabidiphorol (CBDP) in 2019. [1] It had previously been reported as a synthetic compound, [2] but was not identified as a natural product prior to 2019. Recently, CBDP has been gained popularity due to it being synthesized and available on a commercial level. [3]

Contents

Pharmacology

Pharmacodynamics

CBDP shows weak antagonism at both cannabinoid receptors (CB1 and CB2), similar to cannabidiol (CBD). CBD, however, exhibits stronger antagonism at CB2, reaching a 33% maximum response of SR144528 versus CBDP's 23%. [4]

Both cannabinoids act as weak agonists at the serotonin 5-HT1A receptor, contributing to potential anxiolytic effects. [4]

Unlike CBD, CBDP shows no sign of dopamine D2 receptor agonism. [4]

Unexpectedly, CBDP acts as a positive allosteric modulator (PAM) at the MOR, enhancing met-enkephalin signaling by 37%, potentially affecting pain perception. [4]

Related Research Articles

<span class="mw-page-title-main">Tetrahydrocannabinol</span> Psychoactive component of cannabis

Tetrahydrocannabinol (THC) is a cannabinoid found in cannabis. It is the principal psychoactive constituent of cannabis and one of at least 113 total cannabinoids identified on the plant. Although the chemical formula for THC (C21H30O2) describes multiple isomers, the term THC usually refers to the delta-9-THC isomer with chemical name (−)-trans9-tetrahydrocannabinol. It is a colorless oil.

<span class="mw-page-title-main">Cannabinoid</span> Compounds found in cannabis

Cannabinoids are several structural classes of compounds found in the cannabis plant primarily and most animal organisms or as synthetic compounds. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC) (delta-9-THC), the primary psychoactive compound in cannabis. Cannabidiol (CBD) is also a major constituent of temperate cannabis plants and a minor constituent in tropical varieties. At least 100 distinct phytocannabinoids have been isolated from cannabis, although only four have been demonstrated to have a biogenetic origin. It was reported in 2020 that phytocannabinoids can be found in other plants such as rhododendron, licorice and liverwort, and earlier in Echinacea.

<span class="mw-page-title-main">Cannabinoid receptor</span> Group of receptors to cannabinoid compounds

Cannabinoid receptors, located throughout the body, are part of the endocannabinoid system of vertebrates– a class of cell membrane receptors in the G protein-coupled receptor superfamily. As is typical of G protein-coupled receptors, the cannabinoid receptors contain seven transmembrane spanning domains. Cannabinoid receptors are activated by three major groups of ligands:

<span class="mw-page-title-main">Cannabinol</span> Naturally-occurring cannabinoid

Cannabinol (CBN) is a mildly psychoactive phytocannabinoid that acts as a low affinity partial agonist at both CB1 and CB2 receptors. This activity at CB1 and CB2 receptors constitutes interaction of CBN with the endocannabinoid system (ECS).

<span class="mw-page-title-main">Tetrahydrocannabivarin</span> Homologue of tetrahydrocannabinol

Tetrahydrocannabivarin is a homologue of tetrahydrocannabinol (THC) having a propyl (3-carbon) side chain instead of pentyl (5-carbon), making it non-psychoactive in lower doses. It has been shown to exhibit neuroprotective activity, appetite suppression, glycemic control and reduced side effects compared to THC, making it a potential treatment for management of obesity and diabetes. THCV was studied by Roger Adams as early as 1942.

<span class="mw-page-title-main">Cannabigerol</span> Minor cannabinoid

Cannabigerol (CBG) is a non-psychoactive cannabinoid and minor constituent of cannabis. It is one of more than 120 identified cannabinoids found in the plant genus Cannabis. The compound is the decarboxylated form of cannabigerolic acid (CBGA), the parent molecule from which other cannabinoids are biosynthesized.

<span class="mw-page-title-main">Cannabinoid receptor 2</span> Mammalian protein found in Homo sapiens

The cannabinoid receptor 2(CB2), is a G protein-coupled receptor from the cannabinoid receptor family that in humans is encoded by the CNR2 gene. It is closely related to the cannabinoid receptor 1 (CB1), which is largely responsible for the efficacy of endocannabinoid-mediated presynaptic-inhibition, the psychoactive properties of tetrahydrocannabinol (THC), the active agent in cannabis, and other phytocannabinoids. The principal endogenous ligand for the CB2 receptor is 2-Arachidonoylglycerol (2-AG).

<span class="mw-page-title-main">Tetrahydrocannabutol</span> Chemical compound

Δ9-Tetrahydrocannabutol is a phytocannabinoid found in cannabis that is a homologue of tetrahydrocannabinol (THC), the main active component of Cannabis. Structurally, they are only different by the pentyl side chain being replaced by a butyl side chain. THCB was studied by Roger Adams as early as 1942

<span class="mw-page-title-main">Cannabichromene</span> Chemical compound

Cannabichromene (CBC), also called cannabichrome, cannanbichromene, pentylcannabichromene or cannabinochromene, exhibits anti-inflammatory properties in vitro, which may, theoretically, contribute to cannabis analgesic effects. It is a phytocannabinoid, one of the hundreds of cannabinoids found in the Cannabis plant. It bears structural similarity to the other natural cannabinoids, including tetrahydrocannabinol (THC), tetrahydrocannabivarin (THCV), cannabidiol (CBD), and cannabinol (CBN), among others. CBC and cannabinols are present in cannabis. It is not scheduled by the Convention on Psychotropic Substances.

A cannabinoid receptor antagonist, also known simply as a cannabinoid antagonist or as an anticannabinoid, is a type of cannabinoidergic drug that binds to cannabinoid receptors (CBR) and prevents their activation by endocannabinoids. They include antagonists, inverse agonists, and antibodies of CBRs. The discovery of the endocannabinoid system led to the development of CB1 receptor antagonists. The first CBR inverse agonist, rimonabant, was described in 1994. Rimonabant blocks the CB1 receptor selectively and has been shown to decrease food intake and regulate body-weight gain. The prevalence of obesity worldwide is increasing dramatically and has a great impact on public health. The lack of efficient and well-tolerated drugs to cure obesity has led to an increased interest in research and development of CBR antagonists. Cannabidiol (CBD), a naturally occurring cannabinoid and a non-competitive CB1/CB2 receptor antagonist, as well as Δ9-tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid, modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. CBD is a very low-affinity CB1 ligand, that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant.

<span class="mw-page-title-main">Abnormal cannabidiol</span> Synthetic, cannabinoid-like compound

Abnormal cannabidiol (Abn-CBD) is a synthetic regioisomer of cannabidiol, which unlike most other cannabinoids produces vasodilator effects, lowers blood pressure, and induces cell migration, cell proliferation and mitogen-activated protein kinase activation in microglia, but without producing any psychoactive or sedative effects. Abn-CBD can be found as an impurity in synthetic cannabidiol.

<span class="mw-page-title-main">Tetrahydrocannabinolic acid</span> THC precursor

Tetrahydrocannabinolic acid is a precursor of tetrahydrocannabinol (THC), an active component of cannabis.

<span class="mw-page-title-main">CBD-DMH</span> Chemical compound with cannabinoid effects

Cannabidiol-dimethylheptyl (CBD-DMH or DMH-CBD) is a synthetic homologue of cannabidiol where the pentyl chain has been replaced by a dimethylheptyl chain. Several isomers of this compound are known. The most commonly used isomer in research is (−)-CBD-DMH, which has the same stereochemistry as natural cannabidiol, and a 1,1-dimethylheptyl side chain. This compound is not psychoactive and acts primarily as an anandamide reuptake inhibitor, but is more potent than cannabidiol as an anticonvulsant and has around the same potency as an antiinflammatory. Unexpectedly the “unnatural” enantiomer (+)-CBD-DMH, which has reversed stereochemistry from cannabidiol, was found to be a directly acting cannabinoid receptor agonist with a Ki of 17.4nM at CB1 and 211nM at CB2, and produces typical cannabinoid effects in animal studies, as does its 7-OH derivative.

<span class="mw-page-title-main">8,9-Dihydrocannabidiol</span> Chemical compound

8,9-Dihydrocannabidiol is a synthetic cannabinoid that is closely related to cannabidiol (CBD) itself. that was first synthesized by Alexander R. Todd in 1940 derived from the catalytic hydrogenation of cannabidiol.

<span class="mw-page-title-main">Tetrahydrocannabiphorol</span> Cannabinoid agonist compound

Tetrahydrocannabiphorol (THCP) is a potent phytocannabinoid, a CB1 and CB2 receptor agonist which was known as a synthetic homologue of tetrahydrocannabinol (THC), but for the first time in 2019 was isolated as a natural product in trace amounts from Cannabis sativa. It is structurally similar to Δ9-THC, the main active component of cannabis, but with the pentyl side chain extended to heptyl. Since it has a longer side chain, its cannabinoid effects are "far higher than Δ9-THC itself." Tetrahydrocannabiphorol has a reported binding affinity of 1.2 nM at CB1, approximately 33 times that of Δ9-THC (40 nM at CB1).

<span class="mw-page-title-main">Δ-8-Tetrahydrocannabinol</span> Isomer of tetrahydrocannabinol

Δ-8-tetrahydrocannabinol is a psychoactive cannabinoid found in the cannabis plant. It is an isomer of delta-9-tetrahydrocannabinol, the compound commonly known as THC, with which it co-occurs in hemp; natural quantities of ∆8-THC found in hemp are low. Psychoactive effects are similar to that of Δ9-THC, with central effects occurring by binding to cannabinoid receptors found in various regions of the brain.

<span class="mw-page-title-main">Tetrahydrocannabiorcol</span> Chemical compound

Δ9-Tetrahydrocannabiorcol (Δ9-THCC, (C1)-Δ9-THC) is a phytocannabinoid found in Cannabis pollen. It is a homologue of THC and THCV with the alkyl side chain replaced by a smaller methyl group. Unlike THC and THCV, THCC has negligible affinity for the CB1 and CB2 cannabinoid receptors because of the smaller methyl group and does not have psychoactive effects as a result, but conversely it is significantly more potent than THC or THCV as an activator of the TRPA1 calcium channel which plays an important role in pain perception, and it has been shown to produce analgesic effects via activation of spinal TRPA1 channels. THCC was studied by Roger Adams as early as 1942.

<span class="mw-page-title-main">Hexahydrocannabinol</span> Hydrogenated derivative of THC

Hexahydrocannabinol (HHC) is a hydrogenated derivative of tetrahydrocannabinol (THC). It is a naturally occurring phytocannabinoid that has rarely been identified as a trace component in Cannabis sativa, but can also be produced synthetically by firstly acid cyclization of cannabidiol and then hydrogenation of tetrahydrocannabinol. The synthesis and bioactivity of HHC was first reported in 1940 by Roger Adams.

<span class="mw-page-title-main">Tetrahydrocannabihexol</span> Chemical compound

Tetrahydrocannabihexol is a phytocannabinoid, the hexyl homologue of tetrahydrocannabinol (THC) which was first isolated from Cannabis plant material in 2020 along with the corresponding hexyl homologue of cannabidiol, though it had been known for several decades prior to this as an isomer of the synthetic cannabinoid parahexyl. Another isomer Δ8-THCH is also known as a synthetic cannabinoid under the code number JWH-124, though it is unclear whether this occurs naturally in Cannabis, but likely is due to Δ8-THC itself being a degraded form of Δ9-THC. THC-Hexyl can be synthesized from 4-hexylresorcinol and was studied by Roger Adams as early as 1942.

Conversion of cannabidiol (CBD) to tetrahydrocannabinol (THC) can occur through a ring-closing reaction. This cyclization can be acid-catalyzed or brought about by heating.

References

  1. Citti C, Linciano P, Russo F, Luongo L, Iannotta M, Maione S, et al. (December 2019). "A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ9-tetrahydrocannabinol: Δ9-Tetrahydrocannabiphorol". Scientific Reports. 9 (1): 20335. Bibcode:2019NatSR...920335C. doi: 10.1038/s41598-019-56785-1 . PMC   6937300 . PMID   31889124.
  2. USAbondoned 2012/172339,Makriyannis A, Nikas SP, Alapafuja SO,"Angiogenic resorcinol derivatives",published 5 July 2012, assigned to Northeastern University Boston.
  3. Heredia M (27 May 2024). "What Is CBDP? Everything You Need To Know". herb.co. Retrieved 2024-09-13.
  4. 1 2 3 4 Haghdoost M, et al. (July 2024). "CBD Versus CBDP: Comparing In Vitro Receptor-Binding Activities". International Journal of Molecular Sciences. 25 (14): 7724. doi: 10.3390/ijms25147724 . PMC   11277192 . PMID   39062976.

See also