MMB-2201

Last updated
MMB-2201
5F-AMB-PICA.svg
Legal status
Legal status
Identifiers
  • (S)-Methyl 2-(1-(5-fluoropentyl)-1H-indole-3-carboxamido)-3-methylbutanoate
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C20H27FN2O3
Molar mass 362.445 g·mol−1
3D model (JSmol)
  • CC(C)[C@@H](C(=O)OC)NC(=O)c1cn(c2c1cccc2)CCCCCF
  • InChI=1S/C20H27FN2O3/c1-14(2)18(20(25)26-3)22-19(24)16-13-23(12-8-4-7-11-21)17-10-6-5-9-15(16)17/h5-6,9-10,13-14,18H,4,7-8,11-12H2,1-3H3,(H,22,24)/t18-/m0/s1
  • Key:JFXASAFVUQVGEW-SFHVURJKSA-N

MMB-2201 (also known as MMB-5F-PICA, [1] 5F-MMB-PICA, 5F-AMB-PICA, and I-AMB) is a potent indole-3-carboxamide based synthetic cannabinoid, [2] which has been sold as a designer drug and as an active ingredient in synthetic cannabis blends. [3] It was first reported in Russia and Belarus in January 2014, but has since been sold in a number of other countries. In the United States, MMB-2201 was identified in Drug Enforcement Administration drug seizures for the first time in 2018. [4]

Contents

MMB-2201 is the indole core analogue of 5F-AMB. Synthetic cannabinoid compounds with an indole-3-carboxamide or indazole-3-carboxamide core bearing a N-1-methoxycarbonyl group with attached isopropyl or tert-butyl substituent, have proved to be much more dangerous than older synthetic cannabinoid compounds previously reported, and have been linked to many deaths in Russia, Japan, Europe and the United States. [5] [6]

Legality

MMB-2201 is illegal in Russia, Belarus and Sweden. [7]

See also

Related Research Articles

<span class="mw-page-title-main">MN-18</span> Chemical compound

MN 18 is an indazole-based synthetic cannabinoid that is an agonist for the cannabinoid receptors, with Ki values of 45.72 nM at CB1 and 11.098 nM at CB2 and EC50 values of 2.028 nM at CB1 and 1.233 nM at CB2, and has been sold online as a designer drug. It is the indazole core analogue of NNE1. Given the known metabolic liberation (and presence as an impurity) of amantadine in the related compound APINACA, it is suspected that metabolic hydrolysis of the amide group of MN-18 may release 1-naphthylamine, a known carcinogen. MN-18 metabolism has been described in literature.

<span class="mw-page-title-main">APICA (synthetic cannabinoid drug)</span> Chemical compound

APICA is an indole based drug that acts as a potent agonist for the cannabinoid receptors.

<span class="mw-page-title-main">AB-FUBINACA</span> Chemical compound

AB-FUBINACA (AMB-FUBINACA) is a psychoactive drug that acts as a potent agonist for the cannabinoid receptors, with Ki values of 0.9 nM at CB1 and 23.2 nM at CB2 and EC50 values of 1.8 nM at CB1 and 3.2 nM at CB2. It was originally developed by Pfizer in 2009 as an analgesic medication but was never pursued for human use. In 2012, it was discovered as an ingredient in synthetic cannabinoid blends in Japan, along with a related compound AB-PINACA, which had not previously been reported.

<span class="mw-page-title-main">AB-PINACA</span> Chemical compound

AB-PINACA is a compound that was first identified as a component of synthetic cannabis products in Japan in 2012.

<span class="mw-page-title-main">ADBICA</span> Group of stereoisomers

ADBICA (also known as ADB-PICA) is a designer drug identified in synthetic cannabis blends in Japan in 2013. ADBICA had not previously been reported in the scientific literature prior to its sale as a component of synthetic cannabis blends. ADBICA features a carboxamide group at the 3-indole position, like SDB-001 and STS-135. The stereochemistry of the tert-butyl side-chain in the product is unresolved, though in a large series of indazole derivatives structurally similar to ADBICA that are disclosed in Pfizer patent WO 2009/106980, activity resides exclusively in the (S) enantiomers. ADBICA is a potent agonist of the CB1 receptor and CB2 receptor with an EC50 value of 0.69 nM and 1.8 nM respectively.

<span class="mw-page-title-main">ADB-FUBINACA</span> Chemical compound

ADB-FUBINACA (ADMB-FUBINACA) is a designer drug identified in synthetic cannabis blends in Japan in 2013. In 2018, it was the third-most common synthetic cannabinoid identified in drugs seized by the Drug Enforcement Administration.

<span class="mw-page-title-main">AB-CHMINACA</span> Chemical compound

AB-CHMINACA is an indazole-based synthetic cannabinoid. It is a potent agonist of the CB1 receptor (Ki = 0.78 nM) and CB2 receptor (Ki = 0.45 nM) and fully substitutes for Δ9-THC in rat discrimination studies, while being 16x more potent. Continuing the trend seen in other cannabinoids of this generation, such as AB-FUBINACA and AB-PINACA, it contains a valine amino acid amide residue as part of its structure, where older cannabinoids contained a naphthyl or adamantane residue.

<span class="mw-page-title-main">5F-ADB</span> Chemical compound

5F-ADB (also known as MDMB-5F-PINACA and 5F-MDMB-PINACA) is an indazole-based synthetic cannabinoid from the indazole-3-carboxamide family, which has been used as an active ingredient in synthetic cannabis products and has been sold online as a designer drug. 5F-ADB is a potent agonist of the CB1 receptor, though it is unclear whether it is selective for this target. 5F-ADB was first identified in November 2014 from post-mortem samples taken from an individual who had died after using a product containing this substance. Subsequent testing identified 5F-ADB to have been present in a total of ten people who had died from unexplained drug overdoses in Japan between September 2014 and December 2014. 5F-ADB is believed to be extremely potent based on the very low levels detected in tissue samples, and appears to be significantly more toxic than earlier synthetic cannabinoid drugs that had previously been sold.

<span class="mw-page-title-main">5F-AMB</span> Chemical compound

5F-AMB (also known as 5F-MMB-PINACA and 5F-AMB-PINACA) is an indazole-based synthetic cannabinoid from the indazole-3-carboxamide family, which has been used as an active ingredient in synthetic cannabis products. It was first identified in Japan in early 2014. Although only very little pharmacological information about 5F-AMB itself exists, its 4-cyanobutyl analogue (instead of 5-fluoropentyl) has been reported to be a potent agonist for the CB1 receptor (KI = 0.7 nM).

<span class="mw-page-title-main">PX-3</span> Chemical compound

PX-3 (also known as APP-CHMINACA) is an indazole-based synthetic cannabinoid. It is a potent agonist of the CB1 receptor with a binding affinity of Ki = 47.6 nM and was originally developed by Pfizer in 2009 as an analgesic medication.

<span class="mw-page-title-main">MDMB-CHMICA</span> Chemical compound

'MDMB-CHMICAa' is an indole-based synthetic cannabinoid that is a potent agonist of the CB1 receptor and has been sold online as a designer drug. While MDMB-CHMICA was initially sold under the name "MMB-CHMINACA", the compound corresponding to this code name (i.e. the isopropyl instead of t-butyl analogue of MDMB-CHMINACA) has been identified on the designer drug market in 2015 as AMB-CHMINACA.

<span class="mw-page-title-main">MDMB-FUBINACA</span> Chemical compound

MDMB-FUBINACA (also known as MDMB(N)-Bz-F and FUB-MDMB) is an indazole-based synthetic cannabinoid that is a potent agonist for the cannabinoid receptors, with Ki values of 1.14 nM at CB1 and 0.1228 nM at CB2 and EC50 values of 0.2668 nM at CB1 and 0.1411 nM at CB2, and has been sold online as a designer drug. Its benzyl analogue (instead of 4-fluorobenzyl) has been reported to be a potent agonist for the CB1 receptor (Ki = 0.14 nM, EC50 = 2.42 nM). The structure of MDMB-FUBINACA contains the amino acid, 3-methylvaline or tert-leucine methyl ester.

<span class="mw-page-title-main">MDMB-CHMINACA</span> Chemical compound

MDMB-CHMINACA (also known as MDMB(N)-CHM) is an indazole-based synthetic cannabinoid that acts as a potent agonist of the CB1 receptor, and has been sold online as a designer drug. It was invented by Pfizer in 2008, and is one of the most potent cannabinoid agonists known, with a binding affinity of 0.0944 nM at CB1, and an EC50 of 0.330 nM. It is closely related to MDMB-FUBINACA, which caused at least 1000 hospitalizations and 40 deaths in Russia as consequence of intoxication.

<span class="mw-page-title-main">APP-FUBINACA</span> Chemical compound

APP-FUBINACA is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. Pharmacological testing showed APP-FUBINACA to have only moderate affinity for the CB1 receptor, with a Ki of 708 nM, while its EC50 was not tested. It contains a phenylalanine amino acid residue in its structure.

<span class="mw-page-title-main">AMB-FUBINACA</span> Chemical compound

AMB-FUBINACA (also known as FUB-AMB and MMB-FUBINACA) is an indazole-based synthetic cannabinoid that is a potent agonist for the cannabinoid receptors, with Ki values of 10.04 nM at CB1 and 0.786 nM at CB2 and EC50 values of 0.5433 nM at CB1 and 0.1278 nM at CB2, and has been sold online as a designer drug. It was originally developed by Pfizer which described the compound in a patent in 2009, but was later abandoned and never tested on humans. AMB-FUBINACA was the most common synthetic cannabinoid identified in drug seizures by the Drug Enforcement Administration in 2017 and the first half of 2018.

<span class="mw-page-title-main">AMB-CHMINACA</span> Chemical compound

AMB-CHMINACA or MMB-CHMINACA (also known as MA-CHMINACA) is an indazole-based synthetic cannabinoid that is a potent agonist of the CB1 receptor and has been sold online as a designer drug.

<span class="mw-page-title-main">5F-AB-FUPPYCA</span> Chemical compound

5F-AB-FUPPYCA (also known as AZ-037) is a pyrazole-based synthetic cannabinoid that is presumed to be an agonist of the CB1 receptor and has been sold online as a designer drug. It was first detected by the EMCDDA as part of a seizure of 540 g white powder in France in February 2015.

<span class="mw-page-title-main">5F-MDMB-PICA</span> Chemical compound

5F-MDMB-PICA (MDMB-5F-PICA) is a designer drug and synthetic cannabinoid. In 2018, it was the fifth-most common synthetic cannabinoid identified in drugs seized by the Drug Enforcement Administration.

<span class="mw-page-title-main">4F-MDMB-BINACA</span> Chemical compound

4F-MDMB-BINACA (also known as MDMB-4F-BINACA, 4F-MDMB-BUTINACA or 4F-ADB) is an indazole-based synthetic cannabinoid from the indazole-3-carboxamide family. It has been used as an active ingredient in synthetic cannabis products and sold as a designer drug since late 2018. 4F-MDMB-BINACA is an agonist of the CB1 receptor (EC50 = 7.39 nM), though it is unclear whether it is selective for this target. In December 2019, the UNODC announced scheduling recommendations placing 4F-MDMB-BINACA into Schedule II throughout the world.

References

  1. Pulver B, Fischmann S, Gallegos A, Christie R (March 2023). "EMCDDA framework and practical guidance for naming synthetic cannabinoids". Drug Testing and Analysis. 15 (3): 255–276. doi:10.1002/dta.3403. PMID   36346325.
  2. Banister SD, Longworth M, Kevin R, Sachdev S, Santiago M, Stuart J, et al. (September 2016). "Pharmacology of Valinate and tert-Leucinate Synthetic Cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and Their Analogues". ACS Chemical Neuroscience. 7 (9): 1241–1254. doi:10.1021/acschemneuro.6b00137. PMID   27421060.
  3. "MMB-2201". Cayman Chemical. Retrieved 16 July 2015.
  4. Yin S (2019). "Adolescents and Drug Abuse: 21st Century Synthetic Substances". Clinical Pediatric Emergency Medicine. 20 (1): 17–24. doi:10.1016/j.cpem.2019.03.003. S2CID   88290992.
  5. Shevyrin VA, Morzherin YY, Melkozerov VP, Nevero AS (July 2014). "New Synthetic Cannabinoid – Methyl 2-{[1-(5-Fluoro-Pentyl)-3-Methyl-1H -Indol-3-Ylcarbonyl]-Amino}Butyrate – as a Designer Drug". Chemistry of Heterocyclic Compounds. 50 (4): 583–586. doi:10.1007/s10593-014-1511-6. S2CID   97489753.
  6. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Shafran Y, Morzherin Y, et al. (August 2015). "Identification and analytical characteristics of synthetic cannabinoids with an indazole-3-carboxamide structure bearing a N-1-methoxycarbonylalkyl group". Analytical and Bioanalytical Chemistry. 407 (21): 6301–6315. doi:10.1007/s00216-015-8612-7. PMID   25893797. S2CID   31838655.
  7. "Cannabinoider föreslås bli klassade som hälsofarlig vara" [Cannabinoids are proposed to be classified as a health hazard]. Folkhälsomyndigheten[The Public Health Authority] (in Swedish). Retrieved 29 June 2015.