ADB-FUBIATA

Last updated
ADB-FUBIATA
ADB-FUBIATA structure.png
Legal status
Legal status
Identifiers
  • (2S)-2-[[2-[1-[(4-fluorophenyl)methyl]indol-3-yl]acetyl]amino]-3,3-dimethylbutanamide
PubChem CID
ChemSpider
Chemical and physical data
Formula C23H26FN3O2
Molar mass 395.478 g·mol−1
3D model (JSmol)
  • CC(C)(C)[C@@H](C(=O)N)NC(=O)CC1=CN(C2=CC=CC=C21)CC3=CC=C(C=C3)F
  • InChI=1S/C23H26FN3O2/c1-23(2,3)21(22(25)29)26-20(28)12-16-14-27(19-7-5-4-6-18(16)19)13-15-8-10-17(24)11-9-15/h4-11,14,21H,12-13H2,1-3H3,(H2,25,29)(H,26,28)/t21-/m1/s1
  • Key:KHAUCCNSUMBFOT-OAQYLSRUSA-N

ADB-FUBIATA (AD-18, FUB-ACADB, ADB-FUBIACA) is a synthetic cannabinoid compound first identified in 2021. It is closely related in structure to the older compound ADB-FUBICA but with the amide linker group extended by the addition of a methylene bridge. It started to be sold as an ingedient in grey-market synthetic cannabis blends following the introduction of legislation in China which for the first time introduced general controls on various classes of synthetic cannabinoids, [2] but did not encompass compounds where the linker group had been extended in this fashion. ADB-FUBIATA has many times lower affinity for cannabinoid receptors than ADB-FUBICA with an EC50 of only 635 nM at CB1, but retains full agonist activity at this target, while being practically inactive at CB2. [3] [4]

Contents

Legality

In the United States ADB-FUBIATA is unscheduled at the federal level as of May 22, 2023 but may be considered under the federal analogue act if sold for human consumption. North Dakota has placed ADB-FUBIATA into Schedule I on 04/27/2023. [5]

See also

Related Research Articles

<span class="mw-page-title-main">JWH-081</span> Chemical compound

JWH-081 is an analgesic chemical from the naphthoylindole family, which acts as a cannabinoid agonist at both the CB1 and CB2 receptors. With a Ki of 1.2nM it is fairly selective for the CB1 subtype, its affinity at this subtype is measured at approximately 10x the affinity at CB2(12.4nM). It was discovered by and named after John W. Huffman.

<span class="mw-page-title-main">JWH-210</span> Chemical compound

JWH-210 is an analgesic chemical from the naphthoylindole family, which acts as a potent cannabinoid agonist at both the CB1 and CB2 receptors, with Ki values of 0.46 nM at CB1 and 0.69 nM at CB2. It is one of the most potent 4-substituted naphthoyl derivatives in the naphthoylindole series, having a higher binding affinity (i.e. lower Ki) at CB1 than both its 4-methyl and 4-n-propyl homologues JWH-122 (CB1 Ki 0.69 nM) and JWH-182 (CB1 Ki 0.65 nM) respectively, and than the 4-methoxy compound JWH-081 (CB1 Ki 1.2 nM). It was discovered by and named after John W. Huffman.

<span class="mw-page-title-main">JWH-122</span> Chemical compound

JWH-122 is a synthetic cannabimimetic that was discovered by John W. Huffman. It is a methylated analogue of JWH-018. It has a Ki of 0.69 nM at CB1 and 1.2 nM at CB2.

<span class="mw-page-title-main">MDA-19</span> Chemical compound

MDA-19 (also known as BZO-HEXOXIZID) is a drug that acts as a potent and selective agonist for the cannabinoid receptor CB2, with reasonable selectivity over the psychoactive CB1 receptor, though with some variation between species. In animal studies it was effective for the treatment of neuropathic pain, but did not effect rat locomotor activity in that specific study. The pharmacology of MDA-19 in rat cannabinoid receptors have been demonstrated to function differently than human cannabinoid receptors with MDA-19 binding to human CB1 receptors 6.9× higher than rat CB1 receptors.

<span class="mw-page-title-main">UR-144</span> Chemical compound

UR-144 (TMCP-018, KM-X1, MN-001, YX-17) is a drug invented by Abbott Laboratories, that acts as a selective full agonist of the peripheral cannabinoid receptor CB2, but with much lower affinity for the psychoactive CB1 receptor.

<span class="mw-page-title-main">MAM-2201</span> Chemical compound

MAM-2201 is a drug that presumably acts as a potent agonist for the cannabinoid receptors. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in the Netherlands and Germany in June 2011 as an ingredient in synthetic cannabis smoking blends. Like RCS-4 and AB-001, MAM-2201 thus appears to be a novel compound invented by "research chemical" suppliers specifically for grey-market recreational use. Structurally, MAM-2201 is a hybrid of two known cannabinoid compounds JWH-122 and AM-2201, both of which had previously been used as active ingredients in synthetic cannabis blends before being banned in many countries.

<span class="mw-page-title-main">APINACA</span> Chemical compound

APINACA (AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide) is a drug that acts as a reasonably potent agonist for the cannabinoid receptors. It is a full agonist at CB1 with an EC50 of 142 nM and Ki of 3.24 nM (compared to the Ki of Δ9-THC at 28.35 nM and JWH-018 at 9.62 nM), while at CB2 it acts as a partial agonist with an EC50 of 141 nM and Ki of 1.68 nM (compared to the Ki of Δ9-THC at 37.82 nM and JWH-018 at 8.55 nM). Its pharmacological characterization has also been reported in a discontinued patent application. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in Japan in March 2012 as an ingredient in synthetic cannabis smoking blends, along with a related compound APICA. Structurally, it closely resembles cannabinoid compounds from a University of Connecticut patent, but with a simple pentyl chain on the indazole 1-position, and APINACA falls within the claims of this patent despite not being disclosed as an example.

<span class="mw-page-title-main">EAM-2201</span> Chemical compound

EAM-2201 is a drug that presumably acts as a potent agonist for the cannabinoid receptors. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in Japan in July 2012 as an ingredient in synthetic cannabis smoking blends Like the closely related MAM-2201 which had been first reported around a year earlier, EAM-2201 thus appears to be another novel compound invented by designer drug suppliers specifically for recreational use. Structurally, EAM-2201 is a hybrid of two known cannabinoid compounds JWH-210 and AM-2201, both of which had previously been used as active ingredients in synthetic cannabis blends before being banned in many countries.

<span class="mw-page-title-main">AB-FUBINACA</span> Chemical compound

AB-FUBINACA (AMB-FUBINACA) is a psychoactive drug that acts as a potent agonist for the cannabinoid receptors, with Ki values of 0.9 nM at CB1 and 23.2 nM at CB2 and EC50 values of 1.8 nM at CB1 and 3.2 nM at CB2. It was originally developed by Pfizer in 2009 as an analgesic medication but was never pursued for human use. In 2012, it was discovered as an ingredient in synthetic cannabinoid blends in Japan, along with a related compound AB-PINACA, which had not previously been reported.

<span class="mw-page-title-main">AB-PINACA</span> Chemical compound

AB-PINACA is a compound that was first identified as a component of synthetic cannabis products in Japan in 2012.

<span class="mw-page-title-main">5F-PB-22</span> Chemical compound

5F-PB-22 is a designer drug which acts as a cannabinoid agonist. The structure of 5F-PB-22 appears to have been designed with an understanding of structure–activity relationships within the indole class of cannabinoids.

<span class="mw-page-title-main">5F-AMB</span> Chemical compound

5F-AMB (also known as 5F-MMB-PINACA and 5F-AMB-PINACA) is an indazole-based synthetic cannabinoid from the indazole-3-carboxamide family, which has been used as an active ingredient in synthetic cannabis products. It was first identified in Japan in early 2014. Although only very little pharmacological information about 5F-AMB itself exists, its 4-cyanobutyl analogue (instead of 5-fluoropentyl) has been reported to be a potent agonist for the CB1 receptor (KI = 0.7 nM).

<span class="mw-page-title-main">5F-APINACA</span> Chemical compound

5F-APINACA is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. Structurally it closely resembles cannabinoid compounds from patent WO 2003/035005 but with a 5-fluoropentyl chain on the indazole 1-position, and 5F-APINACA falls within the claims of this patent, as despite not being disclosed as an example, it is very similar to the corresponding pentanenitrile and 4-chlorobutyl compounds which are claimed as examples 3 and 4.

<span class="mw-page-title-main">FUB-JWH-018</span> Chemical compound

FUB-JWH-018 is a naphthoylindole-based synthetic cannabinoid, representing a molecular hybrid of JWH-018 and AB-FUBICA or ADB-FUBICA.

<span class="mw-page-title-main">PX-2</span> Chemical compound

PX-2 is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. It contains a phenylalanine amino acid amide as part of its structure.

<span class="mw-page-title-main">5F-AB-FUPPYCA</span> Chemical compound

5F-AB-FUPPYCA (also known as AZ-037) is a pyrazole-based synthetic cannabinoid that is presumed to be an agonist of the CB1 receptor and has been sold online as a designer drug. It was first detected by the EMCDDA as part of a seizure of 540 g white powder in France in February 2015.

<span class="mw-page-title-main">MDMB-4en-PINACA</span> Chemical compound

MDMB-4en-PINACA is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. MDMB-4en-PINACA was first identified in Europe in 2017. In 2021, MDMB-4en-PINACA was the most common synthetic cannabinoid identified by the Drug Enforcement Administration in the United States. MDMB-4en-PINACA differs from 5F-MDMB-PINACA due to replacement of 5-fluoropentyl with a pent-4-ene moiety (4-en).

<span class="mw-page-title-main">4F-MDMB-BINACA</span> Chemical compound

4F-MDMB-BINACA (also known as MDMB-4F-BINACA, 4F-MDMB-BUTINACA or 4F-ADB) is an indazole-based synthetic cannabinoid from the indazole-3-carboxamide family. It has been used as an active ingredient in synthetic cannabis products and sold as a designer drug since late 2018. 4F-MDMB-BINACA is an agonist of the CB1 receptor (EC50 = 7.39 nM), though it is unclear whether it is selective for this target. In December 2019, the UNODC announced scheduling recommendations placing 4F-MDMB-BINACA into Schedule II throughout the world.

<span class="mw-page-title-main">MDMB-5Br-INACA</span> Chemical compound

MDMB-5Br-INACA is an indazole-3-carboxamide derivative which has been sold as a designer drug. Surprisingly it appears to produce psychoactive activity despite the lack of a "tail" group at the indazole 1-position, but is of relatively low potency and has been encountered being misrepresented as other illicit drugs such as MDMA.

<span class="mw-page-title-main">BZO-CHMOXIZID</span> Chemical compound

BZO-CHMOXIZID (CHM-MDA-19) is a synthetic cannabinoid compound first reported in 2008 in the same series as the better known derivative MDA-19. It started to be widely sold as an ingredient in grey-market synthetic cannabis blends in 2021 following the introduction of legislation in China which for the first time introduced general controls on various classes of synthetic cannabinoids, but did not include the group to which MDA-19 and BZO-CHMOXIZID belong. While BZO-CHMOXIZID is the most potent compound at CB1 from this so-called "OXAZID" series, it is still markedly CB2 selective and of relatively low potency at CB1, with an EC50 of 84.6 nM at CB1 compared to 2.21 nM at CB2.

References

  1. Anvisa (2023-07-24). "RDC Nº 804 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 804 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-07-25). Archived from the original on 2023-08-27. Retrieved 2023-08-27.
  2. "关于将合成大麻素类物质和氟胺酮等18种物质列入《非药用类麻醉药品和精神药品管制品种增补目录》的公告" [Announcement on the inclusion of 18 substances including synthetic cannabinoids and fluamine in the "Additional Catalogue of Controlled Varieties of Non-medicinal Narcotics and Psychotropic Drugs"]. Ministry of Public Security of the People's Republic of China (in Chinese). 12 May 2021.
  3. Deventer MH, Van Uytfanghe K, Vinckier IM, Reniero F, Guillou C, Stove CP (September 2022). "A new cannabinoid receptor 1 selective agonist evading the 2021 "China ban": ADB-FUBIATA". Drug Testing and Analysis. 14 (9): 1639–1644. doi:10.1002/dta.3285. hdl: 1854/LU-01GQ757043ZZ4MNSKMZ52FAKJ1 . PMID   35570246. S2CID   248812121.
  4. Pasin D, Nedahl M, Mollerup CB, Tortzen C, Reitzel LA, Dalsgaard PW (September 2022). "Identification of the synthetic cannabinoid-type new psychoactive substance, CH-PIACA, in seized material". Drug Testing and Analysis. 14 (9): 1645–1651. doi:10.1002/dta.3333. PMC   9544820 . PMID   35687099.
  5. "AN ACT to amend and reenact sections 19-03.1-05, 19-03.1-11, and 19-03.1-13 of the North Dakota Century Code, relating to the scheduling of controlled substances; and to declare an emergency" (PDF). Sixty-eighth Legislative Assembly of North Dakota in Regular Session. 3 January 2023.